Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010

ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 08

These exercises will be collected Tuesday 29th June in the mailbox n.14 of the Mathematics department.

Notation: We denote by \overline{A} the topological closure of a set A.

Definition. Let X be a topological space and $A, B \subseteq X$ two disjoint subsets. We say that:

- A and B are separated if $A \cap \overline{B} = \emptyset = \overline{A} \cap B$.
- A and B are separated by neighbourhoods if there are open disjoint $U, V \subseteq X$ with $A \subseteq U$ and $B \subseteq V$.
- A and B are separated by a function if there is a continuous function $f: X \to [0,1] \subset \mathbb{R}$ such that $f(a) = 0 \ \forall a \in A$ and $f(b) = 1 \ \forall b \in B$.

Let X be a topological space. We recall some separation axioms:

- X is $\mathbf{T_1}$ if any two distinct points of X are separated.
- X is $\mathbf{T_2}$ or **Hausdorff** if any two distinct points of X are separated by neighbourhoods.
- We say that X has property (*) if
- (*) any two disjoint closed subsets of X are separated by neighbourhoods.

In the literature, sometimes spaces with property (*) are called T_4 , and in this case a space which is T_1 and T_4 is said to be normal.

Other times a space is called normal if it has property (*) and T_4 if in addition it is T_1 .

For this reason we will just say that X has property (*) with no additional name.

The aim of the first exercise is to show that a topological space X has property (*) if and only if every pair of closed disjoint sets is separated by a function.

In order to apply this result to the proof of Haviland's Theorem we also need exercise 3(i).

- **1**. Let X be a topological space.
- (i) (**Urysohn's Lemma**) Suppose X has property (*). Show that any two closed disjoint sets are separated by a function in the following way:
- (a) Let $A, B \subseteq X$ closed disjoint. Set

 $R = \{ r = k/2^n \in \mathbb{Q} : 0 \leqslant r \leqslant 1, \, k, n \in \mathbb{Z}_+ \}.$

Show that for every $r \in R$ there is an open set U(r) such that:

$$\begin{aligned} & - A \subseteq U(r), \\ & - U(r) \cap B = \emptyset, \\ & - r < r' \ \Rightarrow \ \overline{U(r)} \subseteq U(r'). \end{aligned}$$

(*Hint*: Prove it by induction on n = the exponent of the dyatic fractions)

(b) Replace U(1) by X and define

$$f(y) := \inf\{r \in R : y \in U(r)\}.$$

Show that A and B are separated by f, namely $f: X \to [0,1] \subset \mathbb{R}$ is continuous, $f(a) = 0 \ \forall a \in A$ and $f(b) = 1 \ \forall b \in B$.

- (ii) Show that if two disjoint closed subset of X are separated by a function, then they are separated by neighbourhoods.
- **2**. Let $X = [-1, 1]^2 \subset \mathbb{R}^2$ with the topology induced by the Euclidean topology on \mathbb{R}^2 . Consider the function

$$g \colon \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto -x^2 - 1/10$$

Set

 $A = \operatorname{Graph}(g) \cap X \quad \text{and} \quad B = \{(1,1)\}.$

Find a family of open sets U(r) in X as in exercise 1(i) and define a function separating A and B accordingly.

3.

- (i) Let X be a compact Hausdorff topological space. Show that X has property (*).
- (ii) Is also the converse true?

X has property $(*) \stackrel{?}{\Longrightarrow} X$ compact

X has property $(*) \stackrel{?}{\Longrightarrow} X$ Hausdorff

If the answers are positive, prove them. If negative, provide counterexamples.

 $\mathbf{2}$