ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 08

These exercises will be collected Tuesday 29th June in the mailbox n. 14 of the Mathematics department.

Notation: We denote by \bar{A} the topological closure of a set A.

Definition. Let X be a topological space and $A, B \subseteq X$ two disjoint subsets. We say that:

- A and B are separated if $A \cap \bar{B}=\emptyset=\bar{A} \cap B$.
- A and B are separated by neighbourhoods if there are open disjoint $U, V \subseteq X$ with $A \subseteq U$ and $B \subseteq V$.
- A and B are separated by a function if there is a continuous function $f: X \rightarrow[0,1] \subset \mathbb{R}$ such that $f(a)=0 \forall a \in A$ and $f(b)=1 \forall b \in B$.

Let X be a topological space. We recall some separation axioms:

- X is $\mathbf{T}_{\mathbf{1}}$ if any two distinct points of X are separated.
- X is $\mathbf{T}_{\mathbf{2}}$ or Hausdorff if any two distinct points of X are separated by neighbourhoods.
- We say that X has property $(*)$ if
(*) any two disjoint closed subsets of X are separated by neighbourhoods.

In the literature, sometimes spaces with property $(*)$ are called T_{4}, and in this case a space which is T_{1} and T_{4} is said to be normal.

Other times a space is called normal if it has property $(*)$ and T_{4} if in addition it is T_{1}.

For this reason we will just say that X has property $(*)$ with no additional name.

The aim of the first exercise is to show that a topological space X has property ($*$) if and only if every pair of closed disjoint sets is separated by a function.

In order to apply this result to the proof of Haviland's Theorem we also need exercise $3(i)$.

1. Let X be a topological space.
(i) (Urysohn's Lemma) Suppose X has property (*). Show that any two closed disjoint sets are separated by a function in the following way:
(a) Let $A, B \subseteq X$ closed disjoint. Set

$$
R=\left\{r=k / 2^{n} \in \mathbb{Q}: 0 \leqslant r \leqslant 1, k, n \in \mathbb{Z}_{+}\right\}
$$

Show that for every $r \in R$ there is an open set $U(r)$ such that:
$-A \subseteq U(r)$,
$-U(r) \cap B=\emptyset$,
$-r<r^{\prime} \Rightarrow \overline{U(r)} \subseteq U\left(r^{\prime}\right)$.
(Hint: Prove it by induction on $n=$ the exponent of the dyatic fractions)
(b) Replace $U(1)$ by X and define

$$
f(y):=\inf \{r \in R: y \in U(r)\} .
$$

Show that A and B are separated by f, namely $f: X \rightarrow[0,1] \subset \mathbb{R}$ is continuous, $f(a)=0 \forall a \in A$ and $f(b)=1 \forall b \in B$.
(ii) Show that if two disjoint closed subset of X are separated by a function, then they are separated by neighbourhoods.
2. Let $X=[-1,1]^{2} \subset \mathbb{R}^{2}$ with the topology induced by the Euclidean topology on \mathbb{R}^{2}. Consider the function

$$
\begin{aligned}
g: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \mapsto-x^{2}-1 / 10
\end{aligned}
$$

Set

$$
A=\operatorname{Graph}(g) \cap X \quad \text { and } \quad B=\{(1,1)\}
$$

Find a family of open sets $U(r)$ in X as in exercise $1(i)$ and define a function separating A and B accordingly.
3.
(i) Let X be a compact Hausdorff topological space. Show that X has property (*).
(ii) Is also the converse true?
X has property $(*) \stackrel{?}{\Longrightarrow} X$ compact
X has property $(*) \stackrel{?}{\Longrightarrow} X$ Hausdorff

If the answers are positive, prove them. If negative, provide counterexamples.

