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ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 08

These exercises will be collected Tuesday 29th June in the mailbox n.14 of the
Mathematics department.

Notation: We denote by A the topological closure of a set A.

Definition. Let X be a topological space and A, B ⊆ X two disjoint subsets. We
say that:

• A and B are separated if A ∩B = ∅ = A ∩B.

• A and B are separated by neighbourhoods if there are open disjoint
U, V ⊆ X with A ⊆ U and B ⊆ V .

• A and B are separated by a function if there is a continuous function
f : X → [0, 1] ⊂ R such that f(a) = 0 ∀ a ∈ A and f(b) = 1 ∀ b ∈ B.

Let X be a topological space. We recall some separation axioms:
- X is T1 if any two distinct points of X are separated.

- X is T2 or Hausdorff if any two distinct points of X are separated by
neighbourhoods.

- We say that X has property (∗) if

(∗) any two disjoint closed subsets of X are separated by neighbourhoods.

In the literature, sometimes spaces with property (∗) are called T4, and in this
case a space which is T1 and T4 is said to be normal.

Other times a space is called normal if it has property (∗) and T4 if in addition
it is T1.

For this reason we will just say that X has property (∗) with no additional name.

The aim of the first exercise is to show that a topological space X has property (∗)
if and only if every pair of closed disjoint sets is separated by a function.

In order to apply this result to the proof of Haviland’s Theorem we also need
exercise 3(i).
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1. Let X be a topological space.

(i) (Urysohn’s Lemma) Suppose X has property (∗). Show that any two
closed disjoint sets are separated by a function in the following way:

(a) Let A, B ⊆ X closed disjoint. Set

R = {r = k/2n ∈ Q : 0 6 r 6 1, k, n ∈ Z+}.
Show that for every r ∈ R there is an open set U(r) such that:

− A ⊆ U(r),

− U(r) ∩B = ∅,

− r < r′ ⇒ U(r) ⊆ U(r′).

(Hint : Prove it by induction on n = the exponent of the dyatic fractions)

(b) Replace U(1) by X and define

f(y) := inf{r ∈ R : y ∈ U(r)}.
Show that A and B are separated by f , namely f : X → [0, 1] ⊂ R is

continuous, f(a) = 0 ∀ a ∈ A and f(b) = 1 ∀ b ∈ B.

(ii) Show that if two disjoint closed subset of X are separated by a function,
then they are separated by neighbourhoods.

2. Let X = [−1, 1]2 ⊂ R2 with the topology induced by the Euclidean topology
on R2. Consider the function

g : R −→ R
x 7→ −x2 − 1/10

Set
A = Graph(g) ∩X and B = {(1,1)}.

Find a family of open sets U(r) in X as in exercise 1(i) and define a
function separating A and B accordingly.

3.
(i) Let X be a compact Hausdorff topological space. Show that X has pro-

perty (∗).

(ii) Is also the converse true?

X has property (∗) ?=⇒ X compact

X has property (∗) ?=⇒ X Hausdorff

If the answers are positive, prove them. If negative, provide counterexamples.


