Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010

ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 09

These exercises will be collected Tuesday 6th July in the mailbox n.14 of the Mathematics department.

Let V be a \mathbb{R} -vector space, dim $V = \aleph_0 = |\mathbb{N}|$.

1. Let $W \subset V$ be a finite-dimensional subspace, dim W = n. Fix $\mathcal{B} = \{w_1, \ldots, w_n\}$ a basis of W and define

$$\Phi_{\mathcal{B}} \colon W \longrightarrow \mathbb{R}^{n}
\sum_{i=1}^{n} r_{i} w_{i} \mapsto (r_{1}, \dots, r_{n})$$

Show that:

(a) Setting

(*) $\mathcal{U} \subseteq W$ is open $\stackrel{\text{def}}{\longleftrightarrow} \quad \mathcal{U} = \Phi_{\mathcal{B}}^{-1}(A)$, where $A \subseteq \mathbb{R}^n$ is open,

(*) defines a topology τ on W.

- (b) τ does not depend on \mathcal{B} (τ is called **the Euclidean topology** on W).
- (c) τ is a local convex topology.
- (d) For every finite-dimensional subspaces $W_1 \subset W_2 \subset V$, the Euclidean topology on W_1 coincides with the subspace topology induced from the Euclidean topology on W_2 .
- **2**. Define

$$\mathcal{U} \subseteq V \text{ is open } \stackrel{\text{def}}{\iff} \begin{cases} \forall W \subset V \text{ finite-dimensional subspace, } \mathcal{U} \cap W \text{ is open} \\ \text{with respect to the Euclidean topology on } W. \end{cases}$$

- (a) Show that this defines a topology τ (called **the finite topology** on V).
- (b) Let $\{v_1, v_2, \ldots,\}$ be a basis of V and set $V_n := \operatorname{span}\{v_1, \ldots, v_n\}$ (the subspace generated by v_1, \ldots, v_n).

Show that $\mathcal{U} \subseteq V$ is open with respect to τ if and only if $\mathcal{U} \cap V_n$ is open in V_n with respect to the Euclidean topology on $V_n, \forall n \in \mathbb{N}$.

Definition. Let K be a topological field and V a K-vector space. We say that V is a **topological** K-vector space if there is a topology on V such that the maps

$$V \times V \longrightarrow V$$
$$(v_1, v_2) \mapsto v_1 + v_2$$
$$K \times V \longrightarrow V$$
$$(\lambda, v) \mapsto \lambda v$$

are continuous.

- **3**. Let W, W' finite-dimensional \mathbb{R} -vector spaces with the Euclidean topology. Show that:
- (i) W is a topological \mathbb{R} -vector space.
- (*ii*) $L: W \to \mathbb{R}$ linear $\Rightarrow L$ continuous.
- $(iii) \ L \colon W \times W \to W' \ \text{ bilinear } \Rightarrow \ L \ \text{continuous.}$

 $\mathbf{2}$