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These exercises will be collected Tuesday 6th July in the mailbox n.14 of the
Mathematics department.

Let V be a R-vector space, dimV = ℵ0 = |N|.

1. Let W ⊂ V be a finite-dimensional subspace, dimW = n.
Fix B = {w1, . . . , wn} a basis of W and define

ΦB : W −→ Rn

n∑
i=1

riwi 7→ (r1, . . . , rn)

Show that:

(a) Setting

(∗) U ⊆W is open def⇐⇒ U = Φ−1
B (A), where A ⊆ Rn is open,

(∗) defines a topology τ on W .

(b) τ does not depend on B (τ is called the Euclidean topology on W ).

(c) τ is a local convex topology.

(d) For every finite-dimensional subspaces W1 ⊂W2 ⊂ V , the Euclidean topo-
logy on W1 coincides with the subspace topology induced from the Eucli-
dean topology on W2.

2. Define

U ⊆ V is open def⇐⇒

{
∀W ⊂ V finite-dimensional subspace, U ∩W is open
with respect to the Euclidean topology on W.
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(a) Show that this defines a topology τ (called the finite topology on V ).

(b) Let {v1, v2, . . . ,} be a basis of V and set Vn := span{v1, . . . ,vn} (the sub-
space generated by v1, . . . ,vn).

Show that U ⊆ V is open with respect to τ if and only if U ∩ Vn is open
in Vn with respect to the Euclidean topology on Vn,∀n ∈ N.

Definition. Let K be a topological field and V a K-vector space. We say
that V is a topological K-vector space if there is a topology on V such
that the maps

V × V −→ V

(v1, v2) 7→ v1 + v2

K × V −→ V

(λ, v) 7→ λv

are continuous.

3. Let W , W ′ finite-dimensional R-vector spaces with the Euclidean topology.
Show that:

(i) W is a topological R-vector space.

(ii) L : W → R linear ⇒ L continuous.

(iii) L : W ×W →W ′ bilinear ⇒ L continuous.


