Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Annalisa Conversano SS2010

ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 10

These exercises will be collected Tuesday 13th July in the mailbox n.14 of the Mathematics department.

Notation 1. Let (X, τ) be a topological space and $A \subseteq X$ a subset. We denote by $\tau_{|_A}$ the topology induced on A by τ , namely

$$U \in \tau_{|_A} \stackrel{\text{def}}{\iff} \exists U' \in \tau \text{ with } U' \cap A = U.$$

Notation 2. Let (X, τ^1) , (Y, τ^2) be topological spaces. We denote by $\tau^1 \times \tau^2$ the product topology of τ^1 and τ^2 on $X \times Y$ (we recall that

$$\mathcal{B} = \{ U_1 \times U_2 \mid U_1 \in \tau^1, U_2 \in \tau^2 \}$$

is a basis for $\tau^1\times\tau^2$).

1. Let $(X, \tau^1), (Y, \tau^2)$ be topological spaces and $A \subseteq X, B \subseteq Y$ subsets. Show that

$$(\tau^1 \times \tau^2)_{|_{A \times B}} = \tau^1_{|_A} \times \tau^2_{|_B},$$

namely that the topology induced on $A \times B$ by the product topology $\tau^1 \times \tau^2$ on $X \times Y$ coincides with the product of the induced topologies on A and on B.

2. Let K be a topological field, V a K-topological vector space and $W \subset V$ be a finite-dimensional subspace.

Show that W is a K-topological vector space with the induced topology from V.

Let (X, \mathcal{M}, μ) be a **measure space**, namely

- X is a set,
- \mathcal{M} is a σ -algebra in X (the elements in \mathcal{M} are the **measurable sets**),
- $\mu: \mathcal{M} \to [0, \infty]$ is a countable additive map (where $[0, \infty]$ stands for $\mathbb{R}_+ \cup \{\infty\}$).

We recall that a function $f: X \to [0, \infty]$ is **measurable** if $f^{-1}(U) \in \mathcal{M}$ for every $U \subset [0, \infty]$ open, where a basis for the topology on $[0, \infty]$ is given by $\{[0, a) \mid a \in \mathbb{R}_+\} \cup \{(a, b) \mid a, b \in \mathbb{R}_+\} \cup \{(a, \infty) \mid a \in \mathbb{R}_+\}.$

 χ_A denotes the characteristic function of the set A and a measurable function $s: X \to [0, \infty]$ is **simple** if it is of the form

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$$

for some $\alpha_i \in \mathbb{R}$ and measurable sets $A_i \in \mathcal{M}$.

For every $E \in \mathcal{M}$ and every measurable simple function s as above, we define

$$\int_E s \, d\mu = \sum_{i=1}^n \alpha_i \, \mu(A_i \cap E).$$

If $f: X \to [0, \infty]$ is measurable and $E \in \mathcal{M}$, we define

$$\int_E f \, d\mu = \sup \int_E s \, d\mu,$$

where s ranges over all measurable simple functions such that $0 \leq s \leq f$.

- **3**. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions on X, such that
 - $0 \leq f_n(x) \leq f_{n+1}(x)$ for every $n \in \mathbb{N}$ and every $x \in X$;
 - $-\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in X$.

Show that:

(i) f is measurable;

(ii)

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu.$$

Hints: $0 \leq f \leq g \Rightarrow \int_X f \, d\mu \leq \int_X g \, d\mu$.

Let s be a simple measurable function such that $0 \leq s \leq f$ and c a constant 0 < c < 1, and define $E_n = \{x \in X \mid f_n(x) \geq cs(x)\} \forall n \in \mathbb{N}$. Observe that

$$\int_X f_n \, d\mu \geqslant c \int_{E_n} s \, d\mu$$

and use it to conclude that

$$\lim_{n \to \infty} \int_X f_n \, d\mu \ge \int_X f \, d\mu.$$