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These exercises will be collected Tuesday 13th July in the mailbox n.14 of the
Mathematics department.

Notation 1. Let (X, τ) be a topological space and A ⊆ X a subset. We denote
by τ|A the topology induced on A by τ , namely

U ∈ τ|A
def⇐⇒ ∃U ′ ∈ τ with U ′ ∩A = U.

Notation 2. Let (X, τ1), (Y, τ2) be topological spaces. We denote by τ1 × τ2

the product topology of τ1 and τ2 on X × Y (we recall that

B = {U1 × U2 | U1 ∈ τ1, U2 ∈ τ2}

is a basis for τ1 × τ2 ).

1. Let (X, τ1), (Y, τ2) be topological spaces and A ⊆ X, B ⊆ Y subsets. Show
that

(τ1 × τ2)|A×B
= τ1

|A × τ2
|B ,

namely that the topology induced on A×B by the product topology τ1×τ2

on X × Y coincides with the product of the induced topologies on A and
on B.

2. Let K be a topological field, V a K-topological vector space and W ⊂ V
be a finite-dimensional subspace.

Show that W is a K-topological vector space with the induced topology
from V .
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Let (X,M, µ) be a measure space, namely
• X is a set,
• M is a σ-algebra in X (the elements inM are the measurable sets),
• µ : M → [0,∞] is a countable additive map (where [0,∞] stands for

R+ ∪ {∞}) .

We recall that a function f : X → [0,∞] is measurable if f−1(U) ∈M
for every U ⊂ [0,∞] open, where a basis for the topology on [0,∞] is given
by {[0, a) | a ∈ R+} ∪ {(a, b) | a, b ∈ R+} ∪ {(a,∞] | a ∈ R+}.

χA denotes the characteristic function of the set A and a measurable
function s : X → [0,∞] is simple if it is of the form

s =
n∑

i=1

αiχAi

for some αi ∈ R and measurable sets Ai ∈M.
For every E ∈ M and every measurable simple function s as above, we

define ∫
E

s dµ =
n∑

i=1

αi µ(Ai ∩ E).

If f : X → [0,∞] is measurable and E ∈M, we define∫
E

f dµ = sup
∫

E

s dµ,

where s ranges over all measurable simple functions such that 0 6 s 6 f .

3. Let {fn}n∈N be a sequence of measurable functions on X, such that

− 0 6 fn(x) 6 fn+1(x) for every n ∈ N and every x ∈ X;

− limn→∞ fn(x) = f(x) for every x ∈ X.

Show that:

(i) f is measurable;
(ii)

lim
n→∞

∫
X

fn dµ =
∫

X

f dµ.

Hints: 0 6 f 6 g ⇒
∫

X
f dµ 6

∫
X
g dµ.

Let s be a simple measurable function such that 0 6 s 6 f and c a
constant 0 < c < 1, and define En = {x ∈ X | fn(x) > cs(x)} ∀n ∈ N.
Observe that ∫

X

fn dµ > c

∫
En

s dµ

and use it to conclude that

lim
n→∞

∫
X

fn dµ >
∫

X

f dµ.


