ÜBUNGEN ZUR VORLESUNG POSITIVE POLYNOME

BLATT 10

These exercises will be collected Tuesday 13th July in the mailbox n. 14 of the Mathematics department.

Notation 1. Let (X, τ) be a topological space and $A \subseteq X$ a subset. We denote by $\tau_{\left.\right|_{A}}$ the topology induced on A by τ, namely

$$
U \in \tau_{\left.\right|_{A}} \stackrel{\text { def }}{\Longleftrightarrow} \exists U^{\prime} \in \tau \text { with } U^{\prime} \cap A=U .
$$

Notation 2. Let $\left(X, \tau^{1}\right),\left(Y, \tau^{2}\right)$ be topological spaces. We denote by $\tau^{1} \times \tau^{2}$ the product topology of τ^{1} and τ^{2} on $X \times Y$ (we recall that

$$
\mathcal{B}=\left\{U_{1} \times U_{2} \mid U_{1} \in \tau^{1}, U_{2} \in \tau^{2}\right\}
$$

is a basis for $\left.\tau^{1} \times \tau^{2}\right)$.

1. Let $\left(X, \tau^{1}\right),\left(Y, \tau^{2}\right)$ be topological spaces and $A \subseteq X, B \subseteq Y$ subsets. Show that

$$
\left(\tau^{1} \times \tau^{2}\right)_{\left.\right|_{A \times B}}=\tau_{\left.\right|_{A}}^{1} \times \tau_{\left.\right|_{B}}^{2},
$$

namely that the topology induced on $A \times B$ by the product topology $\tau^{1} \times \tau^{2}$ on $X \times Y$ coincides with the product of the induced topologies on A and on B.
2. Let K be a topological field, V a K-topological vector space and $W \subset V$ be a finite-dimensional subspace.

Show that W is a K-topological vector space with the induced topology from V.

Let (X, \mathcal{M}, μ) be a measure space, namely

- X is a set,
- \mathcal{M} is a σ-algebra in X (the elements in \mathcal{M} are the measurable sets),
- $\mu: \mathcal{M} \rightarrow[0, \infty]$ is a countable additive map (where $[0, \infty]$ stands for $\left.\mathbb{R}_{+} \cup\{\infty\}\right)$.

We recall that a function $f: X \rightarrow[0, \infty]$ is measurable if $f^{-1}(U) \in \mathcal{M}$ for every $U \subset[0, \infty]$ open, where a basis for the topology on $[0, \infty]$ is given by $\left\{[0, a) \mid a \in \mathbb{R}_{+}\right\} \cup\left\{(a, b) \mid a, b \in \mathbb{R}_{+}\right\} \cup\left\{(a, \infty] \mid a \in \mathbb{R}_{+}\right\}$.
χ_{A} denotes the characteristic function of the set A and a measurable function $s: X \rightarrow[0, \infty]$ is simple if it is of the form

$$
s=\sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}}
$$

for some $\alpha_{i} \in \mathbb{R}$ and measurable sets $A_{i} \in \mathcal{M}$.
For every $E \in \mathcal{M}$ and every measurable simple function s as above, we define

$$
\int_{E} s d \mu=\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i} \cap E\right) .
$$

If $f: X \rightarrow[0, \infty]$ is measurable and $E \in \mathcal{M}$, we define

$$
\int_{E} f d \mu=\sup \int_{E} s d \mu
$$

where s ranges over all measurable simple functions such that $0 \leqslant s \leqslant f$.
3. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of measurable functions on X, such that
$-0 \leqslant f_{n}(x) \leqslant f_{n+1}(x)$ for every $n \in \mathbb{N}$ and every $x \in X ;$
$-\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in X$.
Show that:
(i) f is measurable;
(ii)

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Hints: $0 \leqslant f \leqslant g \Rightarrow \int_{X} f d \mu \leqslant \int_{X} g d \mu$.
Let s be a simple measurable function such that $0 \leqslant s \leqslant f$ and c a constant $0<c<1$, and define $E_{n}=\left\{x \in X \mid f_{n}(x) \geqslant c s(x)\right\} \forall n \in \mathbb{N}$. Observe that

$$
\int_{X} f_{n} d \mu \geqslant c \int_{E_{n}} s d \mu
$$

and use it to conclude that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu \geqslant \int_{X} f d \mu
$$

