Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

MODEL THEORY – EXERCISE 1

To be submitted on Wednesday 20.04.2011 by 14:00.

Definition.

Suppose L is a signature, M, N are L-structures. We always assume that L contains a special binary relation symbol \approx , which will always be interpreted as equality: For any structure M, $a, b \in M$,

$$\mathfrak{a} \approx^{\mathcal{M}} \mathfrak{b} \Leftrightarrow \mathfrak{a} = \mathfrak{b}$$

(1) A homomorphism $f: M \to N$ is a function such that (a) For any n-ary relation symbol R,

 $(a_1,\ldots,a_n)\in R^M \Rightarrow (f\left(a_1\right),\ldots,f\left(a_n\right))\in R^N.$

- (b) For any n-ary function symbol $\mathsf{F},$
- $F^{M}(a_{1},...,a_{n}) = b \Rightarrow F^{N}(f(a_{1}),...,f(a_{n})) = f(b).$ (c) For any constant c, $f(c^{M}) = c^{N}$.
- (2) An embedding $f: M \to N$ is a homomorphism $f: M \to N$ such that in (a) above, \Rightarrow is replaced by \Leftrightarrow .
- (3) A homomorphism is called an *isomorphism* if it is an embedding and it is onto.
- (4) A homomorphism $f: M \to M$ is called an *automorphism* if it is an isomorphism from M onto M.
- (5) Denote $M \cong N$ when there exists an isomorphism $f: M \to N$.
- (6) A group (G, +, <) is an ordered abelian group if (G, +) is an abelian group, (G, <) is a linear ordering and $a < b \Rightarrow a + c < b + c$ for all $a, b, c \in G$.

Question 1.

Let A, B, C be structures for a signature L.

- (1) Show that embeddings are injective (one to one).
- (2) Show that if $f: A \to B$ and $g: B \to C$ are homomorphisms then $g \circ f: A \to C$ is a homomorphism.
- (3) Show that $f: A \to B$ is an isomorphism iff f is a homomorphism and there exists a homomorphism $g: B \to A$ such that $f \circ g = id_B$, $g \circ f = id_A$.
- (4) Show that \cong is an equivalence relation between L-structures.

Question 2.

- (1) Let $L = \{P\}$ where P is a predicate (a unary or a 1-place relation symbol). Find an example of two L-structures A, B such that there exists an injective homomorphism from A onto B, but they are not isomorphic.
- (2) Let L be the signature of groups, $L = \{+\}$ where + is a 2-place (binary) function symbol (but you may write a+b instead of +(a, b)). Let M, N be abelian groups. Show that a group homomorphism $h: \mathsf{M} \to \mathsf{N}$ is exactly a homomorphism of structures.

(3) Let $L = \{+, <\}$ where < is a binary relation symbol (but you may write a < b instead of < (a, b)). Let M, N be ordered abelian groups. Show that if $f : M \to N$ is an injective homomorphism of structures which is onto then f is an isomorphism.

Question 3.

Let $L = \{P, R\}$ where R is a binary relation symbol and P is a predicate. Describe all possible L-structures of size 2 upto isomorphism, i.e. give a list of L-structures of size 2 such that any L-structure is isomorphic to exactly one of them. Use the following steps:

- (1) Write down all structures to L with universe $\{1, 2\}$.
- (2) Divide them into \cong equivalence classes.
- (3) Show that every structure is isomorphic to one of these structures.

Question 4.

Suppose M is a structure, $A \subseteq M$. We let Aut (M/A) be the set of all automorphisms of M that fix A, i.e.

$$\{\sigma \in Aut(M) | \forall x \in A(\sigma(x) = x)\}.$$

We let $\operatorname{Aut}(M/[A])$ be the set of all automorphisms of M that fix A setwise, i.e.

 $\left\{ \sigma \in \mathrm{Aut}\left(M\right) \left| \forall x \in A \left(\sigma\left(x\right) \in A \And \sigma^{-1}\left(x\right) \in A\right) \right. \right\}$

- (1) Show that $\operatorname{Aut}(M/A)$ is a group with composition (\circ).
- (2) Show that $\operatorname{Aut}(M/[A])$ is a group with composition.
- (3) Show that $\operatorname{Aut}(M/A)$ is a normal subgroup of $\operatorname{Aut}(M/[A])$.