Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

MODEL THEORY – EXERCISE 10

To be submitted on Wednesday 22.06.2011 by 14:00 in the mailbox.

Definition. We introduce the following notation. Let L be a signature. Let Δ be a set of formulas.

- (1) $M \Rightarrow_{\Delta} N$ means: if $\varphi \in \Delta$ happens to be a sentence and $M \models \varphi$ then $N \models \varphi$. $M \equiv_{\Delta} N$ means that $M \Rightarrow_{\Delta} N$ and $N \Rightarrow_{\Delta} M$. If Δ contains all sentences then this just means $M \equiv N$.
- (2) $f : M \to_{\Delta} N$ means that f is a map from M to N and in addition if $\varphi(\bar{x}) \in \Delta$ and $M \models \varphi(\bar{a})$ for some tuple \bar{a} from M then $N \models \varphi(f[\bar{a}])$.
- (3) If M is a structure and $A \subseteq M$ is a subset, we let L(A) be L with new constant symbols c_a for elements $a \in A$. We denote (M, A) the L(A) structure we get interpreting the constants in the obvious way. $\Delta(A)$ comes from the formulas in Δ by replacing any tuple of free variables \bar{x} by all possible tuples \bar{c}_a of the same length from A.
- (4) Given a structure M, the diagram of M, D(M) is the L(M) theory

 $\{\varphi(\bar{a}) | \varphi \text{ atomic or negation, } \bar{a} \in M, M \models \varphi(\bar{a}) \}.$

- (5) We say that a formula φ is a $\exists \forall$ formula if it is of the form $\exists x_1 \dots \exists x_n \psi (x_1, \dots, x_n, \bar{y})$ where ψ is universal.
- (6) We say that a structure M is generated by a subset $F \subseteq M$ if M is the minimal substructure of M that contains F. Equivalently, M is $\bigcup_{i \in \mathbb{N}} M_i$, where $M_0 = F$, and M_{i+1} is generated by M_i by applying all function symbols.

Question 1.

Prove the following:

- (1) $f: M \to_{\Delta} N$ iff $(M, M) \cong_{\Delta(M)} (N, f[M])$ (here (N, f[M]) is an L(M) structure where we interpret a constant c_m as $f(m) \in N$).
- (2) Let Δ be a set of sentences. Then $f: M \to_{\Delta} N$ iff $M \cong_{\Delta} N$ and f is a map from M to N.
- (3) $f: M \to N$ is a homomorphism iff $f: M \to_{at} N$ where at is the set of all atomic formulas.
- (4) If Δ contains *at* and also the negation of all atomic formulas then *f* is an embedding (see Ex. 1).
- (5) A homomorphism $f : M \to N$ is injective iff $f : M \to_{\Delta} N$ for the set $\Delta = \{x \neq y\}.$
- (6) If Δ is a set of sentences closed under negation, then $M \Rightarrow_{\Delta} N$ implies $M \equiv_{\Delta} N$.
- (7) If Δ is a set of formulas closed under negation, then $f: M \to_{\Delta} N$ implies that we have iff in definition (2) above.

Question 2.

- (1) In class you proved that a theory T is universal iff if T is preserved under substructures. Show that the following statements are equivalent:
 - (a) T is existential, i.e. T can be axiomatized by existential sentences.
 - (b) T is preserved under extensions, i.e. if $M \models T$ and $M \subseteq N$ then $N \models T$.

Hint for (b) implies (a): Show that for all $\varphi \in T$, there is a finite set of existential sentences φ_i such that $T \models \bigvee \varphi_i$ and $\models \bigvee \varphi_i \rightarrow \varphi$. Use compactness.

(2) Conclude that the theory of Groups is neither existential nor universal.

Question 3.

- (1) Suppose φ is a $\exists \forall$ sentence in the signature $L = \{<\}$, where < is a binary relation symbol. Show that if φ is true in $(\mathbb{R}, <)$ then it is also true in $(\mathbb{N}, <)$.
- (2) Is the converse true as well?

Question 4*.

Let L be some signature.

In Exercise 2, Question 3, (3), you proved that if φ is equational then φ is preserved under homomorphic images, products, and substructures (and you used this question in Exercise 9, Question 3). Now prove that if φ is preserved under homomorphic images, products, and substructures then φ is equivalent to a conjunction of equational sentences.

- (1) Let Σ be the set of equational sentences ψ such that $\varphi \models \psi$. Show that is enough to show that $\Sigma \models \varphi$.
- (2) Let A be any model of Σ . Show that it is a homomorphic image of a substructure of a product of models of φ . Use the following steps:
 - (a) Show that there is a set C of structures, such that if $M \models \varphi$ and there is a finite nonempty set $F \subseteq M$ such that M is generated by F, then there is some $M' \in C$ such that $M' \cong M$.
 - (b) Let D be the set of pairs (M, f) where $M \in C$ and $f : A \to M$ some function. Let $\mathfrak{M} = \prod \{M | (M, f) \in D\}$ (so there is some repetition). Define $F : A \to \mathfrak{M}$ by F(a)(M, f) = f(a). Let \mathfrak{N} be the structure generated by the image of F. Deduce that $\mathfrak{N} \models \varphi$.
 - (c) Define a homomorphism $G:\mathfrak{N}\to A$ that satisfies $G\left(F\left(a\right)\right)=a$ and conclude.