Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

MODEL THEORY – EXERCISE 10

To be submitted on Wednesday 22.06.2011 by 14:00 in the mailbox.

Definition. We introduce the following notation. Let L be a signature. Let Δ be a set of formulas.

- (1) $M \Rightarrow_{\Delta} N$ means: if $\varphi \in \Delta$ happens to be a sentence and $M \models \varphi$ then $N \models \varphi$. $M \equiv_{\Delta} N$ means that $M \Rightarrow_{\Delta} N$ and $N \Rightarrow_{\Delta} M$. If Δ contains all sentences then this just means $M \equiv N$.
- (2) $f : M \to_{\Delta} N$ means that f is a homomorphism from M to N and in addition if $M \models \varphi(\bar{a})$ for some tuple \bar{a} from $M, N \models \varphi(f[\bar{a}])$.
- (3) If M is a structure and $A \subseteq M$ is a subset, we let L(A) be L with new constant symbols c_a for elements $a \in A$. We denote (M, A) the L(A) structure we get interpreting the constants in the obvious way. $\Delta(A)$ comes from the formulas in Δ by replacing any tuple of free variables \bar{x} by all possible tuples \bar{c}_a of the same length from A.
- (4) Given a structure M, the diagram of M, D(M) is the L(M) theory

 $\{\varphi(\bar{a}) | \varphi \text{ atomic or negation, } \bar{a} \in M, M \models \varphi(\bar{a}) \}.$

(5) We say that a formula φ is a $\exists \forall$ formula if it is of the form $\exists x_1 \dots \exists x_n \psi (x_1, \dots, x_n, \bar{y})$ where ψ is universal.

Question 1.

Prove the following:

- (1) $f: M \to_{\Delta} N$ iff $(M, M) \cong_{\Delta(M)} (N, f[M])$ (here (N, f[M]) is an L(M) structure where we interpret a constant c_m as $f(m) \in N$).
- (2) Let Δ be a set of sentences. Then $f: M \to_{\Delta} N$ iff $M \cong_{\Delta} N$ and f is a homomorphism from M to N.
- (3) $f: M \to N$ is a homomorphism iff $f: M \to_{at} N$ where at is the set of all atomic formulas.
- (4) If Δ contains *at* and also the negation of all atomic formulas then *f* is an embedding (see Ex. 1).
- (5) A homomorphism $f : M \to N$ is injective iff $f : M \to_{\Delta} N$ for the set $\Delta = \{x \neq y\}.$
- (6) If Δ is a set of sentences closed under negation, then $M \Rightarrow_{\Delta} N$ implies $M \equiv_{\Delta} N$.
- (7) If Δ is a set of formulas closed under negation, then $f: M \to_{\Delta} N$ implies that we have iff in definition (2) above.

Question 2.

- (1) In class you proved that a theory T is universal iff if T is preserved under substructures. Show that the following statements are equivalent:
 - (a) T is existential, i.e. T can be axiomatized by existential sentences.
 - (b) T is preserved under extensions, i.e. if $M \models T$ and $M \subseteq N$ then $N \models T$.

Hint for (b) implies (a): Show that for all $\varphi \in T$, there is a finite set of existential sentences φ_i such that $T \models \bigvee \varphi_i$ and $\models \bigvee \varphi_i \rightarrow \varphi$. Use compactness.

Solution: Suppose we did the hint, then for all φ , let ψ_{φ} be this disjunction. Then ψ_{φ} is existential. Let $\Sigma = \{\psi_{\varphi} | \varphi \in T\}$. Then $\Sigma \equiv T$.

Let $\Gamma = \{ \alpha \mid \alpha \text{ is existential and } \alpha \models \varphi \}$. If there is a finite subset Γ_0 of Γ such that $T \models \bigvee \Gamma_0$, then we are done. If not, by compactness, we find a model M such that $M \models T$, and $M \models \neg \alpha$ for all $\alpha \in \Gamma$. By (1), $D(M) \models \varphi$ ($N \models D(M)$ iff M is embeddable in N iff M is isomorphic to a substructure of N). So there is a sentence $\psi(\bar{a}) \in D(M)$ (so it is quantifier free) such that $\psi(\bar{a}) \models \varphi$. But since \bar{a} are new constants, this means that $\exists \bar{x}\psi(\bar{x}) \models \varphi$ (look at Ex. 3, 1, (4)). But then $\exists \bar{x}\psi(\bar{x}) \in \Gamma$, and this sentence holds true in M – a contradiction.

(2) Conclude that the theory of Groups is neither existential nor universal. Solution: it is not universal, because for instance N is a substructure of Z. The fact that it is not existential is much easier.

Question 3.

(1) Suppose φ is a $\exists \forall$ sentence in the signature $L = \{<\}$, where < is a binary relation symbol. Show that if φ is true in $(\mathbb{R}, <)$ then it is also true in $(\mathbb{N}, <)$.

Solution: Suppose $\varphi = \exists \bar{x} \forall \bar{y} \alpha (\bar{x}, \bar{y})$. There are $\bar{r} \in \mathbb{R}$ witnessing $\mathbb{R} \models \varphi$. Use an automorphism to move them to natural numbers.

- (2) Is the converse true as well?
 - Solution: no. \mathbb{N} thinks there's a minimal element.

Question 4.

Let L be some signature.

In Exercise 2, Question 3, (3), you proved that if φ is equational then φ is preserved under homomorphic images, products, and substructures (and you used this question in Exercise 9, Question 3). Now prove that if φ is preserved under homomorphic images, products, and substructures then φ is equivalent to a conjunction of equational sentences.

- (1) Let Σ be the set of equational sentences ψ such that $\varphi \models \psi$. Show that is enough to show that $\Sigma \models \varphi$. Solution: By compactness, there is some finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models \varphi$, so $\varphi \equiv \bigwedge \Sigma_0$.
- (2) Let A be any model of Σ . Show that it is a homomorphic image of a substructure of a product of models of φ . Use the following steps:
 - (a) Show that there is a set C of structures, such that if $M \models \varphi$ and M is generated by finitely many elements, then there is some $M' \in C$ such that $M' \cong M$.

Solution: The size of a structure generated by finitely many elements is at most $\kappa = |L| + \aleph_0$. Let C be the set of all structures such that their universe is a subset of κ , and such that they are a model of φ .

(b) Let D be the set of pairs (M, f) where $M \in C$ and $f : A \to M$ some function. Let $\mathfrak{M} = \prod \{M | (M, f) \in D\}$ (so there is some repetition). Define $F : A \to \mathfrak{M}$ by F(a)(M, f) = f(a). Let \mathfrak{N} be the structure

generated by the image of F. Deduce that $\mathfrak{N} \models \varphi$.

Solution: $\mathfrak N$ is a substructure of a $\mathfrak M$ which is a model of φ by assumption.

(c) Define a homomorphism $G:\mathfrak{N}\to A$ that satisfies $G\left(F\left(a\right)\right)=a$ and conclude.

Solution: If we see this then A is a homomorphic image of \mathfrak{N} so we are done. Assume that $R \in L$ is some *n*-ary relation symbol, $t_i(x_1, \ldots, x_m)$ are terms, $a_1, \ldots, a_m \in A$ and

 $\mathfrak{N} \models R\left(t_1\left(F\left(a_1\right), \dots, F\left(a_m\right)\right), \dots, t_n\left(F\left(a_1\right), \dots, F\left(a_m\right)\right)\right).$ So for all

 $(M, f) \in D, M \models R(t_1(f(a_1), \ldots, f(a_m)), \ldots, t_n(f(a_1), \ldots, f(a_m))).$ Now, if $\varphi \not\models \forall \bar{x}R(t_1(\bar{x}), \ldots, t_n(\bar{x}))$, then there is some model $M \models \varphi$ such that $M \models \exists \bar{x} \neg R(t_1(\bar{x}), \ldots, t_n(\bar{x})).$ Suppose $c_1, \ldots, c_m \in M$ witness this, and let M_0 be the substructure of M generated by c_1, \ldots, c_m . Then we may assume that $M_0 \in C$. Let $f: A \to M_0$ be $f(a_i) = c_i$. Then $(M, f) \in D$ and we get a contradiction. It follows that $\varphi \models \forall \bar{x}R(t_1(\bar{x}), \ldots, t_n(\bar{x}))$ so this sentence is in Σ , so A satisfies it, and hence G is a homomorphism. (Note that this proof also proves that G is well defined).