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Definition.

(1) The Prüfer p-group Zp∞ , for a prime number p is the multiplicative group
of all pnth roots of unity in C× for all n < ω.

(2) The fundamental theorem for finitely generated abelian groups states that
every finitely generated abelian group G is isomorphic to a direct sum of
primary cyclic groups and infinite cyclic groups. A primary cyclic group is
one whose order is a power of a prime.

(3) An abelian group G is divisible if for every n < ω and x ∈ G there is some
y ∈ G such that ny = x.

(4) An abelian group G, equipped with a linear order < is an ordered abelian
group iff it satisfies ∀xyu (x < y ⇒ x+ u < y + u).

(5) An abelian group G is said to be orderable iff there exists some < such that
(G,<) is an ordered abelian group.

(6) A group is called locally finite if every finitely generated subgroup is finite.
(7) A class of structures K is called hereditary if wheneverM ∈ K and N ⊆M

(a substructure) N ∈ K.

Question 1.
Let p be a prime number and n a positive natural number.

(1) Prove that the group G of all pn roots of unity in C× is cyclic of order pn.
Solution: (there are many possible, and also one can generalize this to all
finite subgroups. here is one suggestion) Consider the polynomial f (X) =
Xpn−1. First of all this polynomial is separable (it splits into distinct linear
factors – no double roots): if it had, then (f, f ′) 6= 1, but f ′ = nXn−1, so
X is the only prime factor of f ′ but it isn’t a factor of f . So the set of
solutions is of size pn – the order of G is pn. In particular it is finite. Let
m be the maximal order of an element from G. Then m is of the form pk

for k ≤ n. This means that for all x ∈ G, xm = 1, but there are at most m
such elements, so m = pn.

(2) Conclude that the Prüfer p-group is a union
⋃

i<ω Gi of finite cyclic groups
of order pi such that Gi ≤ Gi+1.
Solution: Let Gi be the group of pi-roots of unity (note that G0 = {1}).

(3) Prove that the Prüfer p-group is a divisible abelian group.
Solution: Let G be the p-Prüfer group. It’s enough to show that for every
prime q, G is q-divisible. Let x ∈ G. Suppose q = p. Let ζ be a generator
of Gi+1 where x ∈ Gi for some i. Let ε = ζp, so ε is of order pi and a
generator of Gi. And so x = εk. Let y = ζk. Then yp = ζpk = εk = x. If
q 6= p, then there are a, b ∈ Z such that ap+ bq = 1. Suppose x ∈ Gi. Then
x = xap+bq = xap · xbq = xbq =

(
xb
)q.

(4) Conclude that if G is an abelian group, then G can be embedded in a
divisible abelian group.
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Work in the signature L = {·}. Consider the theory D (G) (the diagram of
G) and the theory T of divisible abelian groups (T consists of the axioms
saying that the universe is an abelian group and it is n-divisible for all n).
We should show that D (G) ∪ T is consistent (in the language L (G)). By
compactness, it’s enough to show that every finite part of it is consistent,
i.e. that D (G0) ∪ T is consistent for all finitely generated G0 ≤ G. By the
fundamental theorem, G0 can be written as

Zn ⊕ Z/pn1
1 Z⊕ . . .⊕ Z/pnk

k Z
where pi are prime numbers. So Zn ≤ Qn which is divisible, and Z/pni

i Z ≤
Zp∞

i
which is also divisible, so G0 is a subgroup of

Qn ⊕ Zp∞
1
⊕ . . .⊕ Zp∞

k

which is divisible.

Question 2.
Suppose G is an abelian group. Show that G is orderable iff G is torsion free.
Solution: If G is orderable, say by <, then if x 6= 0, then nx 6= 0 for all n < ω
because for instance if x > 0 then 0 < x = x+ 0 < x+ x and if x < 0 then −x > 0.
If G is torsion free consider the theory T ∪D (G) where T is the theory of ordered
abelian groups in the signature {<,+}. If this theory is consistent, then G is
embeddable in an ordered abelian group, but then since the axiom relating the
order and the group structure is universal, this axiom remains true in G with
the reduction of that ordering to G. By compactness, it’s enough to show that
D (G0) ∪ T is consistent where G0 is a finitely generated subgroup of G. By the
fundamental theorem, G0 is isomorphic to Zn for some n (here we use the fact
that G is torsion free). Let {α1, . . . , αn} ⊆ R be n-linearly independent (over Q)
elements from R (which exist because as a vector space over Q, R has dimension
2ℵ0). Then G is isomorphic to the subgroup of R generated by this set, and in
particular it is orderable.

Question 3.

(1) Suppose I and J are 2 linear orders and that J is infinite. Show that there
is embedding of I into a model of Th (J).
Solution: by compactness, we must show that D (I) ∪ Th (J) is consistent,
so it is enough to embed any finite subset I0 of I into J . But that’s obvious
since J is infinite.

(2) In particular show conclude that every linear order can be embedded into
a dense linear order.
Solution: let J = (Q, <) and use the fact that denseness is elementary.

Question 4.
Show that the class of locally finite groups is hereditary, but not elementary.
Solution: If it were elementary, then let T be a set of axioms in {·} such that
G |= T iff G is locally finite. Add a constant c to the language. Let Σ be T ∪{
ck 6= 1 |k ∈ ω

}
. Then Σ is consistent, because we can find finite groups (so also

locally finite) with elements of bigger and bigger orders. But obviously in every
locally finite group the order of each element is finite.


