MODEL THEORY - EXERCISE 12

To be submitted on Wednesday 6.07 .2011 by 14:00 in the mailbox.
Definition. Let L be a signature.
(1) A theory T is said to be absolutely categorical if $M, N \models T \Rightarrow M \cong N$.
(2) A theory T is said to be λ-categorical for some cardinal λ if there exists a model of size λ and $M, N|=T,|M|=|N|=\lambda \Rightarrow M \cong N$.
(3) We write $M \prec N$ when M is an elementary substructure of N - if $\varphi(\bar{x})$ is a formula and $\bar{a} \in M$ then $M \models \varphi(\bar{a}) \Leftrightarrow N \models \varphi(\bar{a})$.

Question 1.

Show that if $M_{1} \subseteq M_{2} \subseteq M_{3}$ are L-structures (M_{1} is a substructure of M_{2} and M_{2} is a substructure of M_{3}) and $M_{2} \prec M_{3}, M_{1} \prec M_{3}$, then $M_{1} \prec M_{2}$.
Solution: immediate from the definition.

Question 2.

Let σ be a signature.
(1) Assume that σ is finite. Show that if M, N are two finite structures such that $M \equiv N$ then $M \cong N$.
Moreover, show that if M is a finite σ-structure, then there is a sentence φ such that $M \models \varphi$ and if $N \models \varphi$ then $N \cong N$.
Solution: suppose $M=\left\{a_{1}, \ldots, a_{n}\right\}$. Let $\alpha\left(x_{1}, \ldots, x_{n}\right)$ say that the $x_{i} \mathrm{~S}$ are distinct and that the universe is $\left\{x_{1}, \ldots, x_{n}\right\}$. Let R be a k-ary relation symbol. Let $\psi_{R}\left(x_{1}, \ldots, x_{n}\right)$ be

$$
\bigwedge_{\left(a_{i_{1}}, \ldots, a_{i_{k}}\right) \in R^{M}} R\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \wedge \bigwedge_{\left(a_{i_{1}}, \ldots, a_{i_{k}}\right) \notin R^{M}} \neg R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

For a k-ary function symbol F, let $\psi_{F}\left(x_{1}, \ldots, x_{n}\right)$ be

$$
\bigwedge_{\left., \ldots, a_{i_{k}}\right)=a_{i_{j}}} F\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)=x_{i_{j}}
$$

Now note that $M \models \exists x_{1} \ldots x_{n} \alpha(\bar{x}) \wedge \bigwedge_{R \in L} \psi_{R}(\bar{x}) \wedge \bigwedge_{F \in L} \psi_{F}(\bar{x})$, so this sentence holds in N. Let $\left\{b_{1}, \ldots, b_{n}\right\} \subseteq N$ witness this. Then $N=$ $\left\{b_{1}, \ldots, b_{n}\right\}$ (because of α) and the function $a_{i} \mapsto b_{i}$ is an isomorphism because of ψ_{R} and ψ_{F}.
(2) Now prove (1) (without the "moreover") for arbitrary σ.

Solution: Suppose $M \equiv N$ are finite but $M \not \equiv N$. Then $|M|=|N|$ but for every injective and surjective function $f: M \rightarrow N, f$ is not an isomorphism. This means that there is some relation (or function symbol), $R_{f} \in \sigma$, that witness this, i.e. there are $\bar{a} \in M^{k}$ such that $\bar{a} \in R_{f}^{M}$ but $f(\bar{a}) \notin R_{f}^{N}$. The number of such functions is finite (bounded by $|M|^{|M|}$, even less). Let A be the set of all such functions. Now let $\sigma^{\prime}=\left\{R_{j} \mid f \in A\right\}$. Then σ^{\prime} is a finite signature. So there is a sentence φ as in (1). Since $\varphi \in T h(M), N \models \varphi$, i.e. $N \upharpoonright \sigma^{\prime}$ is isomorphic to $M \upharpoonright L^{\prime}$, and let $f: M \rightarrow N$ be an σ^{\prime} isomorphism.

But then $R_{f} \in \sigma^{\prime}$ and this is a contradiction. (Another solution is to do it by induction on $|\sigma|$).
(3) Conclude that a theory T is absolutely categorical iff T is complete and has only finite models.
Solution: suppose T complete and has only finite models. Then if $M, N \models$ T then $M \equiv N$ so use (2). If T is categorical, and M is an infinite model, then by the upwards Lowenheim-Skolem theorem, T has a model of any infinite cardinality, and in particular it has a model which is not isomorphic to M. This means that all models of T are finite. On the other hand, if $M, N \models T$ then $M \equiv N$ so T is complete.

Question 3.

Let $L=\{<\}$ where $<$ is a binary relation symbol. Let $D L O$ (in class it was denoted by $D L O W E P$) be the theory of densely ordered (between any two points there is another point) linear orders with no end points (i.e. there is no minimal or maximal element).
(1) Write down the axioms of $D L O$.
(2) Prove that $D L O$ is \aleph_{0}-categorical.

Hints: assume that $M, N \models D L O$.
(a) Suppose $f: A \rightarrow B$ is a map such that $|A|=|B|$ is finite, $A \subseteq$ $M, B \subseteq N$ and f is an isomorphism (i.e. order preserving). Suppose $a \in M$, show that there is some $f^{\prime} \supseteq f$ (i.e. extending f) such that $a \in \operatorname{Dom}\left(f^{\prime}\right)$.
Solution: if $a \in \operatorname{Dom}(f)$ let $f^{\prime}=f$. Otherwise, if $a>\operatorname{Dom}(f)$, find some $b>\operatorname{Im}(f)$ (why exists?) and let $f^{\prime}=f \cup\{(a, b)\}$. If $a<\operatorname{Dom}(f)$, then find $b<\operatorname{Im}(f)$ and let $f^{\prime}=f \cup\{(a, b)\}$. Otherwise, let $a_{1}<a<a_{2}$ be such that $a_{1}, a_{2} \in \operatorname{Dom}(f)$ and there is no $a^{\prime} \in$ $\operatorname{Dom}(f)$ such that $a_{1}<a^{\prime}<a_{2}$. Then let b be between $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$ and let $f^{\prime}=f \cup\{(a, b)\}$.
(b) Suppose $f: A \rightarrow B$ is a map such that $|A|=|B|$ is finite, $A \subseteq M, B \subseteq$ N and f is an embedding (i.e. order preserving). Suppose $b \in N$, show that there is some $f^{\prime} \supseteq f$ (i.e. extending f) such that $b \in \operatorname{Im}\left(f^{\prime}\right)$. Solution: do the same as before, or consider f^{-1}.
(c) Now, assume $|M|=|N|=\aleph_{0}$ and let $M=\left\{a_{i} \mid i<\omega\right\}, N=\left\{b_{i} \mid i<\omega\right\}$. Define a sequence of functions f_{i} such that

- $\operatorname{Dom}\left(f_{i}\right), \operatorname{Im}\left(f_{i}\right)$ are finite.
- $f_{i}: \operatorname{Dom}\left(f_{i}\right) \rightarrow \operatorname{Im}\left(f_{i}\right)$ is an isomorphism.
- $a_{i} \in \operatorname{Dom}\left(f_{2 i+1}\right), b_{i} \in \operatorname{Im}\left(f_{2 i+2}\right)$.
- $f_{i} \subseteq f_{i+1}$.
(d) Finish the proof.

Solution: take $f=\bigcup f_{i}$.
(3) Deduce that $D L O$ is complete.

Solution: Immediate by the Los-Vaught test.
(4) Prove that $D L O$ has quantifier elimination (hint: use Exercise 4).

Solution: in Ex. 4, Q 3, it was shown that $\operatorname{Th}(\mathbb{Q},<)$ has QE. By completeness $D L O \models T h(\mathbb{Q},<)$, so the result follows.
(5) Show that $D L O$ is not \aleph_{1} categorical.

Solution: Define two models of $D L O$ of size \aleph_{1} : the first is \aleph_{1} but with copies of \mathbb{Q} between any two α and $\alpha+1<\aleph_{1}$ and also a copy of \mathbb{Q} below

0 . The second is the same, but instead of a copy of \mathbb{Q} below 0 , put the same order again but in reverse ordering below 0 . They are not isomorphic because the first one has no element with more than \aleph_{0} elements below it.

Question 4.

Let K be an infinite field. Let $L=\left\{m_{a} \mid a \in k\right\} \cup\{0,+\}$ where m_{a} are unary functions, + a binary function and 0 a constant. We let a K-vector space be a structure for L by interpreting $m_{a}(v)=a \cdot v$. Let T be the theory of an infinite K-vector space.
(1) Write down axioms for T.
(2) Show that T is λ-categorical for all $\lambda>|K|+\aleph_{0}$. Solution: Let $V_{1}, V_{2} \models T$ and $\left|V_{1}\right|=\left|V_{2}\right|=\lambda$. Let $B_{1} \subseteq V_{1}$ and $B_{2} \subseteq V_{2}$ be basis for V_{1}, V_{2} resp. An easy calculation shows that $|V|=|B|+|K|+\aleph_{0}$ for any infinite vector space over K and a basis B. In our case it follows that $\left|B_{1}\right|=\left|B_{2}\right|$. So there is an isomorphism $f: V_{1} \rightarrow V_{2}$, that extends any bijection between B_{1} and B_{2}.
(3) Conclude that T is complete. Solution: by Los-Vaught test.
(4) Show that if K is infinite then T is not $|K|$-categorical. Solution: Let $V_{1}=K$ (i.e. $\operatorname{dim}\left(V_{1}\right)=1$). And $V_{2}=K^{2}$.
(5) Show that if $V_{1} \leq V_{2}$ are two K-vector spaces, then $V_{1} \prec V_{2}$. Solution: Let λ be bigger than $\left|V_{2}\right|+\aleph_{0}+|K|$. Let $V_{2} \leq V_{3}$ be of cardinality λ. By upwards Lowenheim-Skolem, there is some V_{4} such that $V_{2} \prec V_{4}$ and $\left|V_{4}\right|=\lambda$. Extending a basis of V_{2} to a basis of V_{4} and to a basis of V_{3} gives us an isomorphism $f: V_{3} \rightarrow V_{4}$ fixing V_{2}. This means that $V_{2} \prec V_{3}$. By exactly the same argument, $V_{1} \prec V_{3}$. Together, by question 1 , we see that $V_{1} \prec V_{2}$.

