MODEL THEORY - EXERCISE 1

To be submitted on Wednesday 20.04.2011 by 14:00 in class.

Definition.

Suppose L is a language (signature), M, N are L-structures.

- (1) A homomorphism $f: M \to N$ is a function such that
 - (a) For any n-ary relation symbol R, $(\alpha_1,\ldots,\alpha_n)\in R^M\Rightarrow (f(\alpha_1),\ldots,f(\alpha_n))\in R^N.$
 - $\begin{array}{l} \text{(b) For any \mathfrak{n}-ary function symbol F,} \\ F^M\left(\alpha_1,\ldots,\alpha_n\right) = b \Rightarrow F^N\left(f\left(\alpha_1\right),\ldots,f\left(\alpha_n\right)\right) = f\left(b\right). \end{array}$
 - (c) For any constant c, $F(c^M) = c^N$.
- (2) An embedding $f: M \to N$ is a homomorphism $f: M \to N$ such that in (a) above, \Rightarrow is replaced by \Leftrightarrow .
- (3) A homomorphism is called an *isomorphism* if it is an embedding and it is onto
- (4) A homomorphism $f: M \to M$ is called an *automorphism* if it is an isomorphism from M onto M.
- (5) Denote $M \cong N$ when there exists an isomorphism $f: M \to N$.
- (6) A group (G, +, <) is an ordered abelian group if (G, +) is an abelian group, (G, <) is a linear ordering and $a < b \Rightarrow a + c < b + c$ for all $a, b, c \in G$.

Question 1.

Let A, B, C be structures for a language L.

- (1) Show that embeddings are injective (one to one).
- (2) Show that if $f:A\to B$ and $g:B\to C$ are homomorphisms then $g\circ f:A\to C$ is a homomorphism.
- (3) Show that $f: A \to B$ is an isomorphism iff f is a homomorphism and there exists a $g: B \to A$ such that $f \circ g = \mathrm{id}_B$, $g \circ f = \mathrm{id}_A$.
- (4) Show that \cong is an equivalence relation between L-structures.

Question 2.

- (1) Let $L = \{P\}$ where P is a predicate (1-place relation). Find an example of two L-structures A, B such that there exists an injective homomorphism from A <u>onto</u> B, so that they are not isomorphic. Solution: take $A = B = \{1\}$, $P^A = \emptyset$, $P^B = \{1\}$.
- (2) Let L be the language of groups, L = $\{+\}$ where + is a 2-place function symbol (but you may write a+b instead of +(a,b)). Let M, N be abelian groups. Show that a group homomorphism $h:M\to N$ is exactly a homomorphism of structures.
- (3) Let $L = \{+, <\}$ where < is a binary relation symbol (but you may write a < b instead of < (a, b)). Let M, N be ordered abelian groups. Show that if $f: M \to N$ is an injective homomorphism of structures which is onto then f is an isomorphism.

1

Solution: if f(a) < f(b) it must be that $b \le a$ or a < b but it cannot be that $b \le a$.

Question 3.

Let $L = \{P, R\}$ where R is a binary relation symbol and P is a predicate. Describe all possible L-structures of size 2 upto isomorphism, i.e. give a list of L-structures of size 2 such that any L-structure is isomorphic to exactly one of them. Use the following steps:

- (1) Write down all structures to L with universe {1, 2}.
- (2) Divide them into \cong equivalence classes.
- (3) Show that every structure is isomorphic to one of these structures.

Solution: $P = \emptyset$ and: $R = \emptyset$, $R = \{(1,1)\}$, $R = \{(1,2)\}$, $R = \{(1,1),(2,2)\}$, $R = \{(1,1),(2,1)\}$, $R = \{(1,2),(2,1)\}$, $R = \{(1,1),(1,2)\}$, $R = \{1,2\}^2 \setminus \{(1,2)\}$, $R = \{1,2\}^2 \setminus \{(1,1)\}$, $R = \{1,2\}^2 \setminus \{(1,2)\}$, $R = \{(1,1),(1,2)\}$, $R = \{(1,1),(1,2)\}$, $R = \{(1,2)\}$, $R = \{(1,1),(1,2)\}$, $R = \{(1,1),(1,2)\}$, $R = \{(1,1),(1,2)\}$, $R = \{(1,2)\}$, R =

Question 4

Suppose M is a structure, $A \subseteq M$. We let $\operatorname{Aut}(M/A)$ be the set of all automorphisms of M that fix A, i.e.

$$\{\sigma \in \operatorname{Aut}(M) | \forall x \in A (\sigma(x) = x) \}.$$

We let $\operatorname{Aut}(M/[A])$ be the set of all automorphisms of M that fix A setwise, i.e.

$$\left\{\sigma\in\mathrm{Aut}\left(M\right)\left|\forall x\in A\left(\sigma\left(x\right)\in A\ \&\ \sigma^{-1}\left(x\right)\in A\right)\right.\right\}$$

- (1) Show that Aut (M/A) is a group with composition (\circ) .
- (2) Show that Aut(M/[A]) is a group with composition.
- (3) Show that Aut (M/A) is a normal subgroup of Aut (M/[A]). Solution: if $\sigma \in \text{Aut}(M/A)$, and $h \in \text{Aut}(M/[A])$ then for all $x \in A$, $h\sigma h^{-1}(x) = hh^{-1}(x)$ (because $h^{-1}(x) \in A$ and σ fixes A) so it is x.