MODEL THEORY - EXERCISE 2

To be submitted on Wednesday 27.04 .2011 by $14: 00$ in the mailbox.

Definition.

Suppose L is a signature, $L^{\prime} \subseteq L, M, N$ are L-structures.
(1) We say that M is a substructure of N, denoted by $M \subseteq N$ if the universe of M is a subset of the universe of N and id : $M \rightarrow N$ (the identity map) is an embedding.
(2) We say that M is the L^{\prime}-reduct of N, denoted by $M=N \upharpoonright L^{\prime}$ if M is the L^{\prime}-structure whose universe is the same universe as N and all symbols in L^{\prime} are interpreted as in N .
(3) Given a formula φ, we write $\varphi\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ to indicate that the set of free variables of φ is contained in $\left\{x_{0}, \ldots, x_{n-1}\right\}$.
(4) We call a formula φ a sentence if it has no free variables.
(5) We call a formula φ is quantifier free if it does not contain the quantifiers \exists, \forall.
(6) We call a formula φ universal if it of the form $\forall x_{0} \forall x_{1} \ldots \forall x_{n-1} \psi$ where ψ is quantifier free.
(7) We call a formula φ existential if it is of the form $\exists x_{0} \exists x_{1} \ldots \exists x_{n-1} \psi$ where ψ is quantifier free.
(8) We call a formula φ equational if it is of the form $\forall x_{0} \ldots \forall x_{n-1} \psi$ where ψ is atomic.
(9) For 2 L-sentences φ and ψ, we write $\psi \models \varphi$ if for every L-structure M, $M \models \psi \Rightarrow M \models \varphi$.
(10) We say that two L-sentences φ and ψ are elementarily equivalent if for every L-structure $M, M \models \varphi$ iff $M \models \psi$.

Question 1.

In the following clauses you are given a signature and a mathematical statement in English. Write this statement as a sentence in the signature.
(1) $\mathrm{L}=\{\mathrm{f},+,-,| |, 0,<\}$ where $\mathrm{f},| |$ are unary function symbols,,+- are binary function symbols, 0 is a constant and $<$ is a binary relation symbol. The function f is a continuous function when we think of it as a function from \mathbb{R} to \mathbb{R}, and interpret all symbols as in \mathbb{R}.
(2) $\mathrm{L}=\{\mathrm{f},<, 0\}$ where $\mathrm{f},<, 0$ are as in (1). The function f is a continuous function in 0 (when we think of it as a function from \mathbb{R} to \mathbb{R}). Solution: just recall the topological definition of continuous: for every open interval (a, b) containing $f(0), f^{-1}(a, b)$ contains an interval around 0.
(3) $\mathrm{L}=\left\{<, \mathrm{c}_{0}, \mathrm{c}_{1}\right\}$ where $<$ is a binary relation symbol, $\mathrm{c}_{0}, \mathrm{c}_{1}$ are constants. $<$ is a dense linear order (between every 2 elements there is a third one), and c_{0} is the first element, c_{1} is the last element.
(4) $\mathrm{L}=\{\mathrm{S}\}$ where S is a unary relation symbol. The universe contains exactly 5 elements, exactly 3 of them are in S.
(5) $L=\{R\}$ where R is a binary relation symbol. R is a graph of a function.
(6) $L=\{R\}$ as in (5). R is a graph of a surjective function.
(7) $\mathrm{L}=\{+, \cdot, 0,1\}$ where,$+ \cdot$ are binary function symbols, 0,1 are constants (this is the signature of rings). For every polynomial of degree 5 there exists a root.

Question 2.

Suppose $M \subseteq N$ are 2 L-structures (so M is a substructure of N).
(1) Suppose $\varphi\left(x_{0}, \ldots, x_{n-1}\right)$ is a quantifier free formula, and $a_{0}, \ldots, a_{n-1} \in$ M. Show that $M \models \varphi\left[a_{0}, \ldots, a_{n-1}\right]$ iff $N \models \varphi\left[a_{0}, \ldots, a_{n-1}\right]$.
Solution: prove first by induction on terms that for all terms $t\left(x_{0}, \ldots, x_{m-1}\right)$ and all $b_{0}, \ldots, b_{m-1} \in M, t^{M}\left[b_{0}, \ldots, b_{m-1}\right]=t^{N}\left[b_{0}, \ldots, b_{n-1}\right]$. Then show it by induction to all quantifier free formulas.
(2) Suppose $\varphi\left(x_{0}, \ldots, x_{n-1}\right)$ is a universal formula (so of the form $\left.\forall y_{0} \ldots \forall y_{m-1} \psi\left(y_{0}, \ldots, y_{m-1}, x_{0}, \ldots, x_{n-1}\right)\right)$.
Show that if $N \models \varphi\left[a_{0}, \ldots, a_{n-1}\right]$ then $M \models \varphi\left[a_{0}, \ldots, a_{n-1}\right]$.
(3) Suppose $\varphi\left(x_{0}, \ldots, x_{n-1}\right)$ is an existential formula. Show that if $M \models$ $\varphi\left[a_{0}, \ldots, a_{n-1}\right]$ then $N \models \varphi\left[a_{0}, \ldots, a_{n-1}\right]$.
(4) Let $L=\{P\}$ where P is a unary relation symbol. Show that the sentence $\forall x P(x)$ is not elementarily equivalent to an existential sentence.
Solution: suppose it was, to ψ. Let A be the structure with universe $\{0\}$ and $P=\{0\}$, and let B be the structure with universe $\{0,1\}$ and $P=\{0\}$. Then $A \subseteq B$ and $A \models \forall x P(x)$. If ψ was equivalent to it, then $B \models \forall x P(x)$ too (by 3) - a contradiction.

Question 3.

(1) Suppose $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a homomorphism between two L-structures. Show that the image of f is a substructure of B.
(2) Let $\left\{A_{i} \mid i \in I\right\}$ be structures for a signature L, and let $L^{\prime} \subseteq L$. Show that $\left(\prod_{i} A_{i}\right) \upharpoonright L^{\prime}=\prod_{i}\left(A_{i} \upharpoonright L^{\prime}\right)$.
(3) Show that if φ is equational then φ is preserved under homomorphic images, products, and substructures.
Explanation: you need to show that
(a) If $A_{i} \models \varphi$ for all $i \in I$, then $\prod A_{i} \models \varphi$.

Solution: By induction on a term $t\left(x_{0}, \ldots, x_{n-1}\right)$, show that for all $\bar{a}=\left\langle\bar{a}_{i} \mid i \in I\right\rangle \in \prod A_{i}, t \prod A_{i}(\bar{a})=\left\langle t^{A_{i}}\left(\bar{a}_{i}\right) \mid i \in I\right\rangle$.
(b) If $A \subseteq B$ and $B \models \varphi$ then $A \models \varphi$.
(c) If $\mathrm{f}: A \rightarrow B$ is a surjective homomorphism and $A \models \varphi$ then $B \models \varphi$.

