Dr. Itay Kaplan

MODEL THEORY – EXERCISE 3

To be submitted on Wednesday 04.05.2011 by 14:00 in the mailbox.

Definition.

Suppose L is a signature.

- (1) For a set of sentences Σ and for a structure M, we write $M \models \Sigma$ for $M \models \varphi$ for every $\varphi \in \Sigma$.
- (2) For a set of sentences Σ in L, and an L-sentence φ , we write $\Sigma \models \varphi$ when for all L-structures $M \models \Sigma \Rightarrow M \models \varphi$.
- (3) For two sets of formulas in free variables $\bar{x} = (x_0, \ldots, x_{n-1}), \Psi(\bar{x})$ and $\Theta(\bar{x})$, and a set of sentences Σ , we say that $\Psi(\bar{x})$ and $\Theta(\bar{x})$ are *logically* equivalent modulo Σ if for every $M \models \Sigma$, and every $\bar{a} = (a_0, \ldots, a_{n-1}), M \models \psi[\bar{a}]$ for all $\psi(\bar{x}) \in \Psi(\bar{x})$ iff $M \models \theta[\bar{a}]$ for all $\theta(\bar{x}) \in \Theta(\bar{x})$.
- (4) If Σ in (4) is empty, we say that Ψ and Θ are logically equivalent.
- (5) Given a structure M and a subset $A \subseteq M$, a subset $X \subseteq M^n$ is said to be *definable over* A if there is an L-formula $\varphi(x_0, \ldots, x_{n-1}, y_0, \ldots, y_{k-1})$ and parameters from $A b_0, \ldots, b_{k-1} \in A$ such that

$$X = \{(a_0, \dots, a_{n-1}) \in M^n \mid M \models \varphi [a_0, \dots, a_{n-1}, b_0, \dots, b_{k-1}] \}.$$

Question 1.

Let L be a signature that contains at least one constant symbol c. Let M be an L-structure.

- (1) Let $t(x_0, \ldots, x_{n-1})$ be a term in L (this notation means that t uses variables only from x_0, \ldots, x_{n-1}). Denote by t(c) the term induced by replacing every appearance of x_0 with c. Show that $t(c)^M[a_1, \ldots, a_{n-1}] = t[c^M, a_1, \ldots, a_{n-1}]$ for every $a_1, \ldots, a_{n-1} \in M$.
- (2) Now suppose that $\varphi(x_0, \ldots, x_{n-1})$. Denote by $\varphi(c)$ the formula induced by replacing every free appearance of x_0 by c. Show that $M \models \varphi(c) [a_1, \ldots, a_{n-1}]$ iff $M \models \varphi[c^M, a_1, \ldots, a_{n-1}]$ for every $a_1, \ldots, a_{n-1} \in M$.
- (3) Now let $L' \subseteq L$, $M' = M \upharpoonright L'$. Suppose $\varphi(x_0, \ldots, x_{n-1})$ is an L' formula, then for all $a_0, \ldots, a_{n-1} \in M$, $M' \models \varphi[a_0, \ldots, a_{n-1}]$ iff $M \models \varphi[a_0, \ldots, a_{n-1}]$.
- (4) Prove the following claim: Assume that c does not appear in the sentences φ and ψ, and that φ is of the form ∃xα(x). Show that φ ⊨ ψ iff α(c) ⊨ ψ.
- (5) Show that the claim in 4 is not true if we allow c to appear in φ . Do the same for ψ .

Question 2.

A set of sentences Σ is called independent iff for no $\varphi \in \Sigma$, $\Sigma \setminus \{\varphi\} \models \varphi$.

- (1) Show that if Σ is finite, then it has an independent equivalent subset (i.e. logically equivalent to Σ).
- (2) Find an example of an infinite Σ without an independent equivalent subset.

(3) Now assume that $\Sigma = \{\alpha_i | i \in \mathbb{N}\}$. Show that there is some independent equivalent Σ' (not necessarily being a subset).

Question 3.

Suppose $\varphi(\bar{x})$ is a quantifier free formula. Show that it can be written in disjunctive normal form, i.e. that $\varphi(\bar{x})$ is logically equivalent to a formula $\psi(\bar{x})$ where $\psi(\bar{x}) = \bigvee_{i < n} \bigwedge_{j < k} \alpha_{i,j}(\bar{x})$ where $\alpha_{i,j}$ is atomic or negation of atomic.

Hint: let Γ be the set of all atomic formulas appearing in φ (so it is finite). For every structure M, and tuple \bar{a} (in the length of \bar{x}), let $f_{M,\bar{a}}: \Gamma \to \{T, F\}$ satisfy $f_{M,\bar{a}}(\alpha) = T$ iff $M \models \alpha[\bar{a}]$. Show by induction on φ that if $f_{M,\bar{a}_1} = f_{M,\bar{a}_2}$ then $M_1 \models \varphi[\bar{a}_1]$ iff $M_2 \models \varphi[\bar{a}_2]$. For each function $f: \Gamma \to \{T, F\}$, let φ^f be this truth value (if f does not appear as $f_{M,\bar{a}}$, then choose φ^f arbitrarily).

Let $A = \{f : \Gamma \to \{T, F\} | \varphi^f = T\}$, show that φ is equivalent to $\bigvee_{f \in A} \bigwedge \alpha^{f(\alpha)}(\bar{x})$ where $\alpha^T = \alpha$ and $\alpha^F = \neg \alpha$.

Question 4.

- (1) Show that if M is a structure, $X \subseteq M$ is definable over $A \subseteq M$, and σ is an automorphism of M fixing A (i.e. $\sigma(a) = a$ for all a) then $\sigma(X) = X$. Let $L = \{<\}$. Recall that a linear order is called *dense* if for any a < b there exists c such that a < c < b.
- (2) Write down a list of axiom in L for the theory DLO dense linear order without first and last element.
- (3) Show that $(\mathbb{Q}, <)$ is a model of this theory.
- (4) Describe all definable subsets of \mathbb{Q} over \emptyset that are definable without quantifiers
 - Hint: use (1).
- (5) Describe all definable subsets of Q over Q that are definable without quantifiers (i.e. that the formulas defining them are quantifier free).
 Hint: try to guess what the answer is, and then prove it by induction on the formula.