MODEL THEORY - EXERCISE 4

To be submitted on Wednesday 11.05.2011 by 14:00 in the mailbox.

Definition.

Suppose L is a signature.

- (1) A theory for L is a set of sentences for L which is consistent (i.e. has a model) and deductively closed (i.e. closed under \models).
- (2) A theory T is said to *eliminate quantifiers* if for every formula $\varphi(x_0, \ldots, x_{n-1})$ there exists a quantifier free formula $\psi(x_0, \ldots, x_{n-1})$ such that

$$T \models \forall x_0 \forall x_1 \dots \forall x_{n-1} \varphi \leftrightarrow \psi.$$

- (3) Given a structure M, let $Th(M) = \{\varphi \mid M \models \varphi\}$. This is the theory of M.
- (4) For a set of sentences Σ , $Mod(\Sigma) = \{M | M \models \Sigma\}$.
- (5) For a class of structures K, $Th(K) = \{ \varphi \mid \forall M \in K(M \models \varphi) \}$.
- (6) A class of structures K is called elementary if it is of the form $Mod(\Sigma)$ for a set of sentences Σ .
- (7) A theory T is called complete if for every sentence φ , either $\varphi \in T$ or $\neg \varphi \in T$.

Question 1.

Let $L = \{\in\}$ be the signature of set theory, i.e. \in is a binary relation symbol and we write $x \in y$ instead of $\in (x, y)$. Of course, \approx is also in L. Write down the following statements as formulas:

- (1) $\varphi_{\emptyset}(x)$: "x is the empty set".
- (2) $\varphi_{\subset}(x,y)$: "x is a subset of y".
- (3) $\varphi_1(x)$: "x is a singleton, i.e. a set that contains only one element".
- (4) $\varphi_2(x)$: "x is a pair, i.e. a set that contains exactly 2 elements".
- (5) $\varphi_{on}(x,u,v)$: "x is the ordered pair (u,v), i.e. x is the set $\{\{u\},\{u,v\}\}\}$ ".
- (6) $\varphi_p(x)$: "x is an ordered pair, i.e. there are some u, v such that x = (u, v)".
- (7) $\varphi_f(x, y, z)$: "x is a function from y to z" (i.e. x is a graph of a function from y to z).
- (8) $\varphi_{\text{ini}}(x, y, z)$: "x is an injective function from y to z".
- (9) $\varphi_{\text{onto}}(x,y,z)$: "x is a surjective function from y to z".
- (10) $\varphi_{\infty}(x)$: "x is an infinite set" (hint: x is infinite iff there exists a function from a strict subset of x onto x).
- (11) ψ : "there exists an infinite set ω such that for any infinite set x there exists an injective function from ω to x".
- (12) What does the following formula say about x and y:

$$\forall z \left(z \in x \to \varphi_{p}\left(z\right) \land \forall r \forall w \left(\varphi_{op}\left(z, r, w\right) \to \left(r \in y \land w \in y\right)\right)\right) \land$$

$$\forall z \left(z \in x \to \forall r \forall w \left(\varphi_{op}\left(z, r, w\right) \to \exists z' \left(\varphi_{op}\left(z', w, r\right) \land z' \in x\right)\right)\right) \land$$

$$\forall z \forall z' \left(\left(z \in x \land z' \in x\right) \to \forall r \forall w \forall u \left(\varphi_{op}\left(z, r, w\right) \land \varphi_{op}\left(z', w, u\right) \to \exists z'' \left(\varphi_{op}\left(z'', r, u\right) \land z'' \in x\right)\right)\right) \land$$

$$\forall z \left(z \in y \to \exists z' \left(z' \in x \land \varphi_{op}\left(z', z, z\right)\right)\right)$$

Solution: x is an equivalence relation on y.

Question 2.

Let $L = \{<\}$. Let $M = (\mathbb{Q}, <)$ the structure of rational numbers with ordering. Given $\bar{a} = (a_0, \ldots, a_{n-1}) \in \mathbb{Q}^n$, let the *order type* of \bar{a} be the set of formulas

$$\{x_i < x_j \mid i, j < n, a_i < a_j\} \cup \{x_i \approx x_j \mid i, j < n, a_i = a_j\}.$$

Denote this by otp (\bar{a}) . Show that if \bar{a} and \bar{b} are two tuples of length n with the same order type, then there is an automorphism of M that takes \bar{a} to \bar{b} . Solution: use a piecewise linear map.

Question 3.

Show that the theory $Th(\mathbb{Q},<)$ eliminates quantifiers. Work in the signature that has the additional logical connector \bot which is always interpreted as false. Use the following step.

- (1) Explain why every sentences is equivalent to a quantifier free sentence. Solution: the theory is complete.
- (2) Given a formula $\varphi(\bar{x})$ where $\bar{x} = (x_0, \dots, x_{n-1})$ with n > 0, let $P = \{ \operatorname{otp}(\bar{a}) | \mathbb{Q} \models \varphi[\bar{a}] \}$. Show that P is a finite set. Solution: for i, j < n there are three options, $x_i < x_j \in \operatorname{otp}(\bar{a}), x_j < x_i \in \operatorname{otp}(\bar{a})$ or neither appear. Hence $|P| \leq (n^2)^3$.
- (3) Show that $\varphi(\bar{x})$ is equivalent modulo $Th(\mathbb{Q},<)$ to $\psi(\bar{x}) = \bigvee_{p \in P} \bigwedge p$ (where $\bigwedge p$ is the conjunction of all formulas in p) and conclude. Solution: if $\varphi(\bar{a})$ holds, then by definition otp $(\bar{a}) \in p$, so \bigwedge otp (\bar{a}) holds. If $\psi(\bar{a})$ holds, then necessarily otp $(\bar{a}) \in P$, so there is some \bar{b} with the same order type such that $\varphi(\bar{b})$ holds. But then there is an automorphism of \mathbb{Q} that takes \bar{b} to \bar{a} , so $\varphi(\bar{a})$ also holds. Obviously ψ is quantifier free.

Question 4.

Let L be a signature. Let Σ , Σ_1 , Σ_2 be set of sentences in L, and K, M non-empty classes of L-structures. Show that:

- (1) $\Sigma_1 \subseteq \Sigma_2 \Rightarrow Mod(\Sigma_2) \subseteq Mod(\Sigma_1)$.
- (2) $K \subseteq M \Rightarrow Th(M) \subseteq Th(K)$.
- (3) $\Sigma \subseteq Th (Mod (\Sigma)).$
- (4) $K \subseteq Mod(Th(K))$.
- (5) $Mod(\Sigma) = Mod(Th(Mod(\Sigma)))$. Solution: use (1), (3) and (4). By (4) we get \subseteq , by (1) and (3) we get \supseteq .
- (6) Th(K) = Th(Mod(Th(K))). Solution: use (2), (3) and (4) as before.
- (7) Show that Σ is a theory iff Σ is consistent and $\Sigma = Th \, (Mod \, (\Sigma))$.
- (8) Show that K is elementary iff K = Mod(Th(K)). Solution: by (5).
- (9) In class you showed that if $\Sigma = Th(A)$ for a structure A, then Σ is complete. Is it true that if $\Sigma = Th(\{A_1, A_2\})$ then it must be complete? Give a property of a class of structures K, such that Th(K) is complete iff K satisfies this property.

Solution: no. A_1 might have 2 elements and A_2 only 1. The property is: if $M, N \in K$ then $M \equiv N$ (meaning they have the same theory).