MODEL THEORY - EXERCISE 6

To be submitted on Wednesday 25.05 .2011 by $14: 00$ in the mailbox.

Definition.

(1) For a set of ordinals, $s \subseteq \mathbf{O n}$, let the order type of s, otp (s) be the unique ordinal with which s is isomorphic.
(2) Suppose α is a ordinal. A subset $B \subseteq \alpha$ is called cofinal in α (or unbounded) if $\alpha=\bigcup\{\gamma+1 \mid \gamma \in B\}$ (this means that for every $\beta<\alpha$, there is some $\gamma \in B$ such that $\beta \leq \gamma$).
(3) For an ordinal α, the cofinality of $\alpha, \operatorname{cf}(\alpha)$, is $\min \{\operatorname{otp}(B) \mid B \subseteq \alpha$ is cofinal $\}$.
(4) A cardinal λ is called regular if $\operatorname{cf}(\lambda)=\lambda$.

Question 1.

Prove the Cantor-Bernstein theorem: if A, B are sets, and there is some injective function $f: A \rightarrow B$ and some injective function $g: B \rightarrow A$, then $|A|=|B|$.

Question 2.

Let α be an ordinal.
(1) Show that if α is a successor ordinal, then $\operatorname{cf}(\alpha)=1$.
(2) Show that $\mathrm{cf}(\alpha)$ is always a cardinal.
(3) Conclude that $\operatorname{cf}(\alpha)$ can be defined by $\min \{|B| \mid B \subseteq \alpha$ is cofinal $\}$. Now let λ be an infinite cardinal.
(4) Show that $\lambda \geq c f(\lambda)$.
(5) Show that $c f(c f(\lambda))=c f(\lambda)$.
(6) Show that \aleph_{0} is regular, and that κ^{+}is regular for all infinite κ.
(7) Show that for limit ordinal $\alpha, \operatorname{cf}\left(\aleph_{\alpha}\right)=\operatorname{cf}(\alpha)$ and give an example of an irregular cardinal.

Question 3.

(1) Let λ be a cardinal. Show that if $\left\langle\kappa_{i} \mid i<\lambda\right\rangle$ is a sequence of λ cardinals, such that $i<j<\lambda \Rightarrow \kappa_{i}<\kappa_{j}$, then $\sum_{i<\lambda} \kappa_{i}<\prod_{i<\lambda} \kappa_{i}$ (where $\sum_{i<\kappa} \kappa_{i}$ is the cardinality of the disjoint union $\left\lfloor\kappa_{i}\right.$, and $\Pi \kappa_{i}$ is the cardinality of the Cartesian product).
Hint: try to find a diagonalizing argument, as in the proof of $\kappa<2^{\kappa}$. Note that for $i<\lambda, \sum_{j \leq i} \kappa_{i}=\kappa_{i}$.
(2) Conclude that $\operatorname{cf}\left(\overline{2}^{\kappa}\right)>\kappa$ (note that this generalizes the fact proved in class that $2^{\kappa}>\kappa$).
Hint: deal with 2 cases: 2^{κ} is a successor or limit cardinal.

Question 4.

Let K be a field.
(1) Show that the cardinality of the algebraic elements over K in some field extension F is bounded by $|K|+\aleph_{0}$.
(2) Let V be an infinite vector space over K, and let B be a basis for V. Show that $|B|+|K|+\aleph_{0}=|V|$.
(3) Show that the cardinality of the set of irrational real numbers is $2^{\aleph_{0}}$.
(4) Show that the cardinality of the set of real transcendental numbers is $2^{\aleph_{0}}$ (i.e. elements that are in \mathbb{R} but not algebraic over \mathbb{Q}).

