Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

MODEL THEORY – EXERCISE 6

To be submitted on Wednesday 25.05.2011 by 14:00 in the mailbox.

Definition.

- (1) For a set of ordinals, $s \subseteq \mathbf{On}$, let the order type of s, otp (s) be the unique ordinal with which s is isomorphic.
- (2) Suppose α is a ordinal. A subset $B \subseteq \alpha$ is called *cofinal in* α (or unbounded) if $\alpha = \bigcup \{\gamma + 1 \mid \gamma \in B\}$ (this means that for every $\beta < \alpha$, there is some $\gamma \in B$ such that $\beta < \gamma$).
- (3) For an ordinal α , the *cofinality* of α , cf (α), is min {otp (B) | $B \subseteq \alpha$ is cofinal }.
- (4) A cardinal λ is called *regular* if $cf(\lambda) = \lambda$.

Question 1.

Prove the Cantor-Bernstein theorem: if A, B are sets, and there is some injective function $f: A \to B$ and some injective function $g: B \to A$, then |A| = |B|.

Question 2.

Let α be an ordinal.

- (1) Show that if α is a successor ordinal, then $cf(\alpha) = 1$.
- (2) Show that $cf(\alpha)$ is always a cardinal.
- (3) Conclude that $cf(\alpha)$ can be defined by min $\{|B| | B \subseteq \alpha \text{ is cofinal}\}$. Now let λ be an infinite cardinal.
- (4) Show that $\lambda \geq cf(\lambda)$.
- (5) Show that $cf(cf(\lambda)) = cf(\lambda)$.
- (6) Show that \aleph_0 is regular, and that κ^+ is regular for all infinite κ .
- (7) Show that for limit ordinal α , $cf(\aleph_{\alpha}) = cf(\alpha)$ and give an example of an irregular cardinal.

Question 3.

(1) Let λ be a cardinal. Show that if $\langle \kappa_i | i < \lambda \rangle$ is a sequence of λ cardinals, such that $i < j < \lambda \Rightarrow \kappa_i < \kappa_j$, then $\sum_{i < \lambda} \kappa_i < \prod_{i < \lambda} \kappa_i$ (where $\sum_{i < \kappa} \kappa_i$ is the cardinality of the disjoint union $\prod \kappa_i$, and $\prod \kappa_i$ is the cardinality of the Cartesian product).

Hint: try to find a diagonalizing argument, as in the proof of $\kappa < 2^{\kappa}$. Note

that for $i < \lambda$, $\sum_{j \le i} \kappa_i = \kappa_i$. (2) Conclude that $\operatorname{cf}(2^{\kappa}) > \kappa$ (note that this generalizes the fact proved in class that $2^{\kappa} > \kappa$).

Hint: deal with 2 cases: 2^{κ} is a successor or limit cardinal.

Question 4.

Let K be a field.

- (1) Show that the cardinality of the algebraic elements over K in some field extension F is bounded by $|K| + \aleph_0$.
- (2) Let V be an infinite vector space over K, and let B be a basis for V. Show that $|B| + |K| + \aleph_0 = |V|$.

- (3) Show that the cardinality of the set of irrational real numbers is 2^{ℵ0}.
 (4) Show that the cardinality of the set of real transcendental numbers is 2^{ℵ0}
 - (i.e. elements that are in $\mathbb R$ but not algebraic over $\mathbb Q).$