MODEL THEORY - EXERCISE 6

To be submitted on Wednesday 25.05 .2011 by $14: 00$ in the mailbox.

Definition.

(1) For a set of ordinals, $s \subseteq \mathbf{O n}$, let the order type of s, otp (s) be the unique ordinal with which s is isomorphic.
(2) Suppose α is a ordinal. A subset $B \subseteq \alpha$ is called cofinal in α (or unbounded) if $\alpha=\bigcup B$ (this means that for every $\beta<\alpha$, there is some $\gamma \in B$ such that $\beta<\gamma)$.
(3) For an ordinal α, the cofinality of $\alpha, \operatorname{cf}(\alpha)$, is $\min \{\operatorname{otp}(B) \mid B \subseteq \alpha$ is cofinal $\}$.
(4) A cardinal λ is called regular if $\operatorname{cf}(\lambda)=\lambda$.

Question 1.

Prove the Cantor-Bernstein theorem: if A, B are sets, and there is some injective function $f: A \rightarrow B$ and some injective function $g: B \rightarrow A$, then $|A|=|B|$.
Solution: use the well-order principle. By this we may assume that both A and B are cardinal numbers, κ, λ. First show that if $s \subseteq \alpha \in \mathbf{O n}$, then the unique ordinal β which is order-isomorphic to s is $\leq \alpha$: Suppose $h: s \rightarrow \beta$ is an isomorphism, show by induction on $\gamma \in s$ that $h(\gamma) \leq \gamma$. Then it follows that $h[s]=\beta=\bigcup_{\gamma \in s} h(\gamma) \leq \alpha$. Let $s=g[\lambda] \subseteq \kappa$, then s is order isomorphic to some $\gamma \leq \kappa$, so $\lambda=|s| \leq \gamma \leq \kappa$. Similarly, $\kappa \leq \lambda$.
Remark: there exists also a proof that does not use the axiom of choice at all, it is a little bit more complicated.

Question 2.

Let α be an ordinal.
(1) Show that if α is a successor ordinal, then $\operatorname{cf}(\alpha)=1$. Solution: the cofinal set is the last element.
(2) Show that $\mathrm{cf}(\alpha)$ is always a cardinal. Solution: By (1) we may assume that α is limit. Let B be cofinal in α with $\beta:=\operatorname{otp}(B)=\operatorname{cf}(\alpha)$. Suppose $\gamma<\beta$ is a cardinal, and there is some isomorphism $f: \gamma \rightarrow B$. Define (recursively) $h: \gamma \rightarrow B \cup\{\alpha\}$ by $h(i)=\min \{b \in B \mid \forall j<i(b>f(j), h(j))\} \cup\{\alpha\}$. Obviously, h is well defined. If $i<j<\gamma$ and $h(i) \neq \alpha$ then $h(i)<h(j)$. By definition, $\{i<\gamma \mid h(i) \neq \alpha\}$ is an initial segment of α, so it is an ordinal, $\gamma^{\prime} \leq \gamma$, and $h \upharpoonright \gamma^{\prime}$ is an order isomorphism. If $\gamma^{\prime}<\gamma$, then B is bounded by $B^{\prime}=h\left[\gamma^{\prime}\right] \cup f\left[\gamma^{\prime}\right]$, but $\left|B^{\prime}\right|=\left|\gamma^{\prime}\right|+\left|\gamma^{\prime}\right|<\gamma$, so otp $\left(B^{\prime}\right)<\gamma$ - contradiction to the choice of β. Hence $\gamma^{\prime}=\gamma$, and so h is an order isomorphism from γ onto $h[\gamma]$, and obviously, $h[\gamma]$ bounds B so also α - contradiction to the choice of β.
(3) Conclude that $\operatorname{cf}(\alpha)$ can be defined by $\min \{|B| \mid B \subseteq \alpha$ is cofinal $\}$. Solution: Obviously, $\operatorname{cf}(\alpha)$ is at least this cardinal. On the other hand, if $|B|<\operatorname{cf}(\alpha)$, then otp $(B)<\operatorname{cf}(\alpha)$, so B does not bound α.

Now let λ be an infinite cardinal.
(4) Show that $\lambda \geq c f(\lambda)$. Solution: obviously, λ is unbounded in λ.
(5) Show that $c f(c f(\lambda))=c f(\lambda)$.

Solution: By $(1) c f(c f(\lambda)) \leq c f(\lambda)$. Suppose $B \subseteq c f(\lambda)$ is of size $<c f(\lambda)$ and unbounded. There is some $C \subseteq \lambda$ of order type $\operatorname{cf}(\lambda)$ and unbounded. Let $f: \operatorname{cf}(\lambda) \rightarrow C$ be an order isomorphism. Then $f[B] \subseteq C$ is unbounded in λ. But then $|f[B]|<\operatorname{cf}(\lambda)$ - a contradiction.
(6) Show that \aleph_{0} is regular, and that κ^{+}is regular for all infinite κ.

Solution: for $\aleph_{0}-$ it is clear that there is no finite bounding subset. For κ^{+}: if $B \subseteq \kappa^{+}$is bounding, and $|B| \leq \kappa$, then, as $\kappa^{+}=\bigcup B$, and for all $\alpha \in B$, $|\alpha| \leq \kappa,|\bigcup B| \leq \sum\{|\alpha| \mid \alpha \in B\} \leq \kappa \cdot \kappa=\kappa$.
(7) Show that for limit ordinal $\alpha, \operatorname{cf}\left(\aleph_{\alpha}\right)=\operatorname{cf}(\alpha)$ and find an irregular cardinal. Solution: $\left\{\aleph_{i} \mid i<\alpha\right\}$ is cofinal in \aleph_{0}. So \aleph_{ω} is irregular.

Question 3.

(1) Let λ be a cardinal. Show that if $\left\langle\kappa_{i} \mid i<\lambda\right\rangle$ is a sequence of λ cardinals, such that $i<j<\lambda \Rightarrow \kappa_{i}<\kappa_{j}$, then $\sum_{i<\lambda} \kappa_{i}<\prod_{i<\lambda} \kappa_{i}$ (where $\sum_{i<\kappa} \kappa_{i}$ is the cardinality of the disjoint union $\coprod \kappa_{i}$, and $\prod \kappa_{i}$ is the cardinality of the Cartesian product).
Hint: try to find a diagonalizing argument, as in the proof of $\kappa<2^{\kappa}$. Note that for $i<\lambda, \sum_{j \leq i} \kappa_{i}=\kappa_{i}$.
Solution: Let $\lambda_{1}=\sum_{i<\lambda} \kappa_{i}, \lambda_{2}=\prod_{i<\lambda} \kappa_{i}$. Obviously, we have $\lambda_{1} \leq \lambda_{2}$ (the injective function which takes $\alpha<\kappa_{i}$ to $g: \lambda \rightarrow \bigcup \kappa_{i}$ where $g(j)=0$ for all $j \neq i$ and $g(i)=\alpha$ shows it). On the other hand, if there was also a function $h: \coprod \kappa_{i} \rightarrow \prod \kappa_{i}$ which is surjective, we shall get a contradiction. For $i<\lambda$,

$$
\kappa_{i} \leq \sum_{j \leq i} \kappa_{i} \leq|i| \cdot \kappa_{i} \leq \kappa_{i} \cdot \kappa_{i}=\kappa_{i}
$$

($|i|<\kappa_{i}$ because κ_{i} is increasing). For $i<\lambda$, let $\alpha_{i+1}<\kappa_{i+1}$ be the first element in κ_{i+1} such that α_{i+1} does not appear in $\pi_{i+1}\left(h\left(\coprod_{j \leq i} \kappa_{i}\right)\right)$ (where π_{i+1} is the projection). It exists because the cardinality of $\coprod_{j \leq i} \kappa_{j}$ is $\kappa_{i}<\kappa_{i+1}$. For $i<\lambda$ limit, let $\alpha_{i}=0$. Consider $g=\left\langle\alpha_{i} \mid i<\lambda\right\rangle$. Then $g=h(\alpha)$ for some $\alpha<\kappa_{i}$ for some i. But then α_{i+1} is different than $\pi_{i+1}(h(\alpha))$ - contradiction.
(2) Conclude that $\operatorname{cf}\left(2^{\kappa}\right)>\kappa$ (note that this generalizes the fact proved in class that $2^{\kappa}>\kappa$).
Hint: deal with 2 cases: 2^{κ} is a successor or limit cardinal.
Solution: If 2^{κ} is a successor, then $\mathrm{cf}\left(2^{\kappa}\right)=2^{\kappa}$ by Question 1 , (6), and in that case we know this from class. So we assume that 2^{κ} is limit. In that case, if $\bigcup B=2^{\kappa}$ (i.e. B is unbounded), then $\{|\alpha| \mid \alpha \in B\}$ is also unbounded. Hence, if $|B| \leq \kappa$, then we have a sequence of increasing cardinals of length κ. But then

$$
\sum B<\prod B \leq\left(2^{\kappa}\right)^{\kappa}=2^{\kappa \cdot \kappa}=2^{\kappa}
$$

- a contradiction.

Question 4.

Let K be a field.
(1) Show that the cardinality of the algebraic elements over K in some field extension F is bounded by $|K|+\aleph_{0}$.
Solution: Very similar to (2).
(2) Let V be an infinite vector space over K, and let B be a basis for V. Show that $|B|+|K|+\aleph_{0}=|V|$.
Solution: We easily have \leq. On the other hand, there is a surjective function from $C \times D$ to V, where C is the set of all finite sequences from B, and D is the set of all finite sequences from K. The function is: given $\left\langle b_{1}, \ldots, b_{n}\right\rangle$ and $\left\langle c_{1}, \ldots, c_{k}\right\rangle$, take it to $\sum_{i=1}^{\min \{n, k\}} c_{i} b_{i}$. By a theorem taught in class, $|C|=|B|+\aleph_{0}$ and $|D|=|K|+\aleph_{0}$.
(3) Show that the cardinality of the irrational real numbers is $2^{\aleph_{0}}$.
(4) Show that the number of the real transcendental elements is $2^{\aleph_{0}}$ (i.e. elements that are in \mathbb{R} but not algebraic over \mathbb{Q}).

