Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

MODEL THEORY – EXERCISE 6

To be submitted on Wednesday 25.05.2011 by 14:00 in the mailbox.

Definition.

- (1) For a set of ordinals, $s \subseteq \mathbf{On}$, let the order type of s, otp (s) be the unique ordinal with which s is isomorphic.
- (2) Suppose α is a ordinal. A subset $B \subseteq \alpha$ is called *cofinal in* α (or unbounded) if $\alpha = \bigcup B$ (this means that for every $\beta < \alpha$, there is some $\gamma \in B$ such that $\beta < \gamma$).
- (3) For an ordinal α , the *cofinality* of α , cf (α), is min {otp (B) | $B \subseteq \alpha$ is cofinal }.
- (4) A cardinal λ is called *regular* if $cf(\lambda) = \lambda$.

Question 1.

Prove the Cantor-Bernstein theorem: if A, B are sets, and there is some injective function $f: A \to B$ and some injective function $q: B \to A$, then |A| = |B|.

Solution: use the well-order principle. By this we may assume that both A and B are cardinal numbers, κ, λ . First show that if $s \subseteq \alpha \in \mathbf{On}$, then the unique ordinal β which is order-isomorphic to s is $\leq \alpha$: Suppose $h : s \to \beta$ is an isomorphism, show by induction on $\gamma \in s$ that $h(\gamma) \leq \gamma$. Then it follows that $h[s] = \beta = \bigcup_{\gamma \in s} h(\gamma) \leq \alpha$. Let $s = g[\lambda] \subseteq \kappa$, then s is order isomorphic to some $\gamma \leq \kappa$, so $\lambda = |s| \leq \gamma \leq \kappa$. Similarly, $\kappa \leq \lambda$.

Remark: there exists also a proof that does not use the axiom of choice at all, it is a little bit more complicated.

Question 2.

Let α be an ordinal.

- (1) Show that if α is a successor ordinal, then cf (α) = 1. Solution: the cofinal set is the last element.
- (2) Show that $cf(\alpha)$ is always a cardinal.

Solution: By (1) we may assume that α is limit. Let *B* be cofinal in α with $\beta := \operatorname{otp}(B) = \operatorname{cf}(\alpha)$. Suppose $\gamma < \beta$ is a <u>cardinal</u>, and there is some isomorphism $f : \gamma \to B$. Define (recursively) $h : \gamma \to B \cup \{\alpha\}$ by

 $h(i) = \min \{b \in B | \forall j < i (b > f(j), h(j))\} \cup \{\alpha\}$. Obviously, h is well defined. If $i < j < \gamma$ and $h(i) \neq \alpha$ then h(i) < h(j). By definition, $\{i < \gamma | h(i) \neq \alpha\}$ is an initial segment of α , so it is an ordinal, $\gamma' \leq \gamma$, and $h \upharpoonright \gamma'$ is an order isomorphism. If $\gamma' < \gamma$, then B is bounded by $B' = h[\gamma'] \cup f[\gamma']$, but $|B'| = |\gamma'| + |\gamma'| < \gamma$, so otp $(B') < \gamma$ - contradiction to the choice of β . Hence $\gamma' = \gamma$, and so h is an order isomorphism from γ onto $h[\gamma]$, and obviously, $h[\gamma]$ bounds B so also α - contradiction to the choice of β .

(3) Conclude that $cf(\alpha)$ can be defined by $\min\{|B| | B \subseteq \alpha \text{ is cofinal}\}.$

Solution: Obviously, $\operatorname{cf}(\alpha)$ is at least this cardinal. On the other hand, if $|B| < \operatorname{cf}(\alpha)$, then $\operatorname{otp}(B) < \operatorname{cf}(\alpha)$, so B does not bound α .

Now let λ be an infinite cardinal.

MODEL THEORY - EXERCISE 6

- (4) Show that $\lambda \geq cf(\lambda)$.
 - Solution: obviously, λ is unbounded in λ .
- (5) Show that $cf(cf(\lambda)) = cf(\lambda)$. Solution: By (1) $cf(cf(\lambda)) \leq cf(\lambda)$. Suppose $B \subseteq cf(\lambda)$ is of size $< cf(\lambda)$ and unbounded. There is some $C \subseteq \lambda$ of order type $cf(\lambda)$ and unbounded. Let $f : cf(\lambda) \to C$ be an order isomorphism. Then $f[B] \subseteq C$ is unbounded in λ . But then $|f[B]| < cf(\lambda) - a$ contradiction.
- (6) Show that \aleph_0 is regular, and that κ^+ is regular for all infinite κ . Solution: for \aleph_0 - it is clear that there is no finite bounding subset. For κ^+ : if $B \subseteq \kappa^+$ is bounding, and $|B| \leq \kappa$, then, as $\kappa^+ = \bigcup B$, and for all $\alpha \in B$, $|\alpha| \le \kappa, |\bigcup B| \le \sum \{ |\alpha| | \alpha \in B \} \le \kappa \cdot \kappa = \kappa.$
- (7) Show that for limit ordinal α , cf $(\aleph_{\alpha}) = cf(\alpha)$ and find an irregular cardinal. Solution: $\{\aleph_i | i < \alpha\}$ is cofinal in \aleph_0 . So \aleph_{ω} is irregular.

Question 3.

(1) Let λ be a cardinal. Show that if $\langle \kappa_i | i < \lambda \rangle$ is a sequence of λ cardinals, such that $i < j < \lambda \Rightarrow \kappa_i < \kappa_j$, then $\sum_{i < \lambda} \kappa_i < \prod_{i < \lambda} \kappa_i$ (where $\sum_{i < \kappa} \kappa_i$ is the cardinality of the disjoint union $\prod \kappa_i$, and $\prod \kappa_i$ is the cardinality of the Cartesian product).

Hint: try to find a diagonalizing argument, as in the proof of $\kappa < 2^{\kappa}$. Note

that for $i < \lambda$, $\sum_{j \leq i} \kappa_i = \kappa_i$. Solution: Let $\lambda_1 = \sum_{i < \lambda} \kappa_i$, $\lambda_2 = \prod_{i < \lambda} \kappa_i$. Obviously, we have $\lambda_1 \leq \lambda_2$ (the injective function which takes $\alpha < \kappa_i$ to $g : \lambda \to \bigcup \kappa_i$ where g(j) = 0for all $j \neq i$ and $g(i) = \alpha$ shows it). On the other hand, if there was also a function $h: \coprod \kappa_i \to \prod \kappa_i$ which is surjective, we shall get a contradiction. For $i < \lambda$,

$$\kappa_i \leq \sum_{j \leq i} \kappa_i \leq |i| \cdot \kappa_i \leq \kappa_i \cdot \kappa_i = \kappa_i$$

 $(|i| < \kappa_i \text{ because } \kappa_i \text{ is increasing}).$ For $i < \lambda$, let $\alpha_{i+1} < \kappa_{i+1}$ be the first element in κ_{i+1} such that α_{i+1} does not appear in $\pi_{i+1}\left(h\left(\coprod_{i\leq i}\kappa_i\right)\right)$ (where π_{i+1} is the projection). It exists because the cardinality of $\prod_{j \le i} \kappa_j$ is $\kappa_i < \kappa_{i+1}$. For $i < \lambda$ limit, let $\alpha_i = 0$. Consider $g = \langle \alpha_i | i < \lambda \rangle$. Then $g = h(\alpha)$ for some $\alpha < \kappa_i$ for some *i*. But then α_{i+1} is different than $\pi_{i+1}(h(\alpha))$ – contradiction.

(2) Conclude that $\operatorname{cf}(2^{\kappa}) > \kappa$ (note that this generalizes the fact proved in class that $2^{\kappa} > \kappa$).

Hint: deal with 2 cases: 2^{κ} is a successor or limit cardinal.

Solution: If 2^{κ} is a successor, then $cf(2^{\kappa}) = 2^{\kappa}$ by Question 1, (6), and in that case we know this from class. So we assume that 2^{κ} is limit. In that case, if $\bigcup B = 2^{\kappa}$ (i.e. B is unbounded), then $\{|\alpha| | \alpha \in B\}$ is also unbounded. Hence, if $|B| \leq \kappa$, then we have a sequence of increasing cardinals of length κ . But then

$$\sum B < \prod B \le (2^{\kappa})^{\kappa} = 2^{\kappa \cdot \kappa} = 2^{\kappa}$$

- a contradiction.

Question 4.

Let K be a field.

- (1) Show that the cardinality of the algebraic elements over K in some field extension F is bounded by $|K| + \aleph_0$. Solution: Very similar to (2).
- (2) Let V be an infinite vector space over K, and let B be a basis for V. Show that |B| + |K| + ℵ₀ = |V|. Solution: We easily have ≤. On the other hand, there is a surjective function from C × D to V, where C is the set of all finite sequences from B, and D is the set of all finite sequences from K. The function is: given (b₁,...,b_n) and (c₁,...,c_k), take it to ∑^{min{n,k}}_{i=1} c_ib_i. By a theorem taught in class, |C| = |B| + ℵ₀ and |D| = |K| + ℵ₀.
- (3) Show that the cardinality of the irrational real numbers is 2^{\aleph_0} .
- (4) Show that the number of the real transcendental elements is 2^{ℵ0} (i.e. elements that are in ℝ but not algebraic over ℚ).