Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

MODEL THEORY – EXERCISE 7

To be submitted on Wednesday 25.05.2011 by 14:00 in the mailbox.

Definition.

- (1) Let A be a set, and F ⊆ P (A) is called a *filter* on A if the following holds:
 (a) Ø ∉ F.
 - (b) $F \neq \emptyset$.
 - (c) If $X, Y \in F$ then $X \cap Y \in F$.
 - (d) If $X \in F$ and $X \subseteq Y \subseteq A$ then $Y \in F$.
- (2) F is said to be a *principle filter* if there exists some $X \subseteq A$ such that $F = \{Y \subseteq A | Y \supseteq X\}.$
- (3) F is said to be an *ultrafilter* if for every $X \subseteq A, X \in F$ or $A \setminus X \in F$.
- (4) Let A be an infinite set. A family $C \subseteq \mathcal{P}(A)$ is called *independent* if for every $n, m \in \mathbb{N}$ and $X_1, \ldots, X_n \in C, Y_1, \ldots, Y_m \in C$ such that no two are equal, $\bigcap_i X_i \cap \bigcap (A \setminus Y_i) \neq \emptyset$.
- (5) A structure M is said to be *countably saturated* if given a set $\{\varphi_n(x) \in L(M) | n < \omega\}$ such that each finite subset has a solution a_n , then $\{\varphi_n(x) | n < \omega\}$ has a common solution a. (Recall that L(M) is the signature L where we also allow parameters from M).

Question 1.

(1) Suppose F is a filter on a set A and there exists some finite $X \subseteq A$ such that $X \in F$. Show that F is principle.

Solution: Let $X_0 \subseteq X$ be the smallest set such that $X_0 \in F$. Then F is generated by X_0 : if $Y \in F$, then $Y \cap X_0 \in F$ but it cannot be that $Y \cap X_0 \subsetneq X_0$.

- (2) Show that if F is a principle ultrafilter on a set A then there exists $a \in A$ such that $F = \{X \in A | X \supseteq \{a\}\}$. Solution: suppose F is generated by X. Let $a \in X$ (note that $X \neq \emptyset$). It cannot be that $A \setminus \{a\} \in F$.
- (3) Suppose F is a principle ultrafilter on a set A, and that M_i for $i \in A$ is an L-structure. Show that the ultra-product $\prod_{i \in A} M_i/F$ is isomorphic to M_{i_0} for some $i_0 \in A$. Solution: by (2) there is some i_0 that generates F. Map $\langle x_i | i/A \rangle /D$ to x_{i_0} .
- (4) Suppose A is an infinite set. Let I be the set of all finite subsets of A. For each $s \in I$, let $X_s = \{t \in I \mid t \supseteq s\}$. Show that $\{X \subseteq A \mid \exists s \in I (X \supseteq X_s)\}$ is a filter on A. Solution: $X_s \cap X_t = X_{s \cup t}$.

Question 2.

Let A be an infinite set. Compute the cardinality of the set $U = \{D | D \text{ is an ultrafilter on } A\}$. Use the following steps:

MODEL THEORY – EXERCISE 7

- (1) Show that $|U| \leq 2^{2^{|A|}}$. Solution: $U \subseteq \mathcal{P}(\mathcal{P}(A))$.
- (2) Show that there exists a family $C \subseteq \mathcal{P}(A)$, such that $|C| = 2^{|A|}$ and if $X_1 \neq X_2 \in C$ then $X_1 \subsetneq X_2, X_2 \subsetneq X_1$. Hint: look at graphs of functions, use the fact that $|A|^2 = |A|$. Solution: let $f: A^2 \to A$ be an isomorphism. For each function $r: A \to A$, $f[r] \subseteq A$. Let $C = \{f[r] | r: A \to A\}$. If $r_1 \neq r_2$, then there is some $a \in A$ such that $r_1(a) \neq r_2(a), (a, r_1(a)) \notin r_2$ while $(a, r_2(a)) \notin r_1$.
- (3) Show that there exists an independent family C ⊆ P(A) of subsets of A of cardinality 2^{|A|}.
 Hint: let C₀ be as above. Let M = ω × A^{<ω} (where A^{<ω} is the set of finite sequences from A). For all X ∈ C₀, let X̄ be the set of pairs (n, ā) from M such that: the length of ā is divisible by n, so ā = ā₀ ∩ ... ∩ ā_{k-1} where lg (ā_i) = n, and there is i < k such that all elements from ā_i are in X. Show that {X̄ | X ∈ C} is an independent set in M and conclude. Solution: By a theorem from class |M| = |A|. If X₀,..., X_{n-1}, Y₀..., Y_{m-1} ∈ C₀ as in the definition, for each pair i < n, j < m, let a_{i,j} ∈ X_i\Y_j. For i < n, let ā_i = ⟨a_{i,0}, a_{i,1},..., a_{i,m-1}⟩. Finally, (n, ā₀ ∩ ... ∩ ā_{n-1}) ∈ X̄_i for i < n but not in Y_j for j < m.
- (4) Conclude that $|U| = 2^{2^{|A|}}$.

Solution: For every choice s of a subset of C, we can find an ultrafilter that contains $\{X | X \in s\} \cup \{A \setminus X | X \notin s\}$. It satisfies the finite intersection property, hence is contained in an ultrafilter.

Question 3.

(1) Suppose A is an infinite set, and D is a filter on an infinite set I. Show that $|A| \leq |A^I/D| \leq |A|^{|I|}$.

Solution: Let $\varphi : A \to A^I$ be the diagonal embedding. Now if $a \neq b$, then $\varphi(a) / D \neq \varphi(b) / D$ (the set of indices where they are equal is \emptyset).

(2) Show that for every A and I there exists an ultrafilter on I such that $|A^I/D| = |A|$.

Solution: take a principle ultrafilter.

(3) Let D be a non-principle filter on ω . Show that $|\mathbb{N}^{\omega}/D| = 2^{\aleph_0}$. Hint: use the fact that every natural number has a unique presentation in base 2.

Solution: By (1), we have $\leq \aleph_0^{\aleph_0} \leq (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0}$. For the other direction, for every function $f : \omega \to 2$, let $n_i^f = \sum_{j < i} 2^j f(j)$. If $f_1 \neq f_2$, then $n_i^{f_1} \neq n_i^{f_2}$ for big enough *i*, and this set of indices is cofinite, so it cannot be that its complement is in *D*.

Question 4.

Prove the following:

Let $\{A_i | i \in \mathbb{N}\}$ be structures in a signature *L*. Let *D* be an ultrafilter containing the filter of co-finite sets, and let *A* be the ultraproduct. Then *A* is countably saturated.

Follow these steps:

- We are given a set {φ_n (x) ∈ L (M) |n < ω} as in the definition, and we want to find a common solution. Show that it's enough to show it assuming φ_n ∈ L (i.e. no parameters). Solution: Add the parameters appearing in this set to L, interpret them in A_i in the obvious way: c^{A_i} = c^A (i).
- (2) For $n < \omega$, pick $a_n \in A_n$ such that $A_n \models \varphi_1(a_n), \dots, \varphi_k(a_n)$ for $k \le k(n)$, where $k(n) \le n$ is as large as possible (can be 0). Show that $\langle a_n | n \in \omega \rangle / D$ is a common solution.

Solution: we must show that $\{n | A_n \models \varphi_n(a_n)\}$ is in D.