MODEL THEORY - EXERCISE 8

To be submitted on Wednesday 08.06 .2011 by $14: 00$ in the mailbox.

Definition.

(1) For a set X and a number $n<\omega$, let $X^{[n]}$ be the set of subsets of X of size n.
(2) A graph is a structure $G=(V, E)$ where V is a set of vertices and the edge relation E is a binary relation which is symmetric $(x E y \rightarrow y E x)$ and anti-reflexive $(\neg x E x)$.
(3) The Finiteness Theorem / The Compactness Theorem: if Σ is a set of sentence such that each finite subset of it is consistent (has a model) then Σ has a model.
(4) Let $n<\omega$. We say that a graph G is n-colorable, if there exists a function $C: V \rightarrow n$ such that if $a, b \in V$ and $a E b$ then $C(a) \neq C(b)$.
(5) A class of L-structures K is called elementary if there exists a set of sentences Σ such that $K=\operatorname{Mod}(\Sigma)$.

Question 1.

(1) Let $L=\{<\}$. Show that the class of well orderings is not elementary. Solution: Recall that $<$ is a well order iff there is no infinite descending chain. If there were such a Σ, then consider $\Sigma \cup\left\{c_{i+1}<c_{i}\right\}$ where c_{i} are new constants. Then this set is finitely satisfiable (because $(\mathbb{N},<)$ is always a model with some choice of elements for c_{i}), but not satisfiable contradiction.
(2) Show that the class of all finite sets (in the signature $L=\approx$) is not elementary.
(3) Let $L=\{+, \cdot, 0,1,<\}$, and let $T=\operatorname{Th}(\mathbb{N},+, \cdot, 0,1,<)$. Show that there exists a model M of T with an element c which is greater than all natural numbers (i.e. $c>1^{M},(1+1)^{M}$ etc.)
(4) Show that in the model constructed in (3), there is no minimal such c. Solution: For any $c, c-1$ is well defined (it's the only x satisfying $x+1=c$), and $c-1$ is also bigger than \mathbb{N}, because otherwise, if $c-1<k$, then $c<k+1$.
(5) Let $T=T h(\mathbb{R},+, \cdot, 0,1,<)$. Show that there is a model $M \models T$ with an element $0<\varepsilon \in M$ which is infinitesimal: for every positive integer n, $\varepsilon<\left(1 /(1+\ldots+1)^{M}\right)$ where the 1 is summed n-times.

Question 2.

The infinite Ramsey Theorem states as follows: Suppose V is an infinite set and $C: V^{[2]} \rightarrow\{0,1\}$. Then there exists an infinite subset $U \subseteq V$ and $i \in\{0,1\}$ such that $C(\{x, y\})=i$ for all $x, y \in U$ (in other words, $C \upharpoonright U$ is constant).
You may think of C as a coloring function (of pairs from V), and then U is monochromatic.
The finite Ramsey Theorem states as follows: For all $k<\omega$ there exists some $n<\omega$
such that if $|V|=n$, and $C: V^{[2]} \rightarrow\{0,1\}$ then there exists some $U \subseteq V$ of size k which is monochromatic.
Remark: this is actually the Ramsey Theorem for coloring of pairs in 2 colors.
(1) Prove the infinite Ramsey theorem.

Solution: Construct a sequence of elements $a_{i} \in V$, sets $V_{i} \subseteq V$ and $\varepsilon_{i} \in\{0,1\}$ for $i<\omega$ such that $V_{i+1} \subseteq V_{i}, a_{i} \in V_{i} \backslash V_{i+1}, V_{i}$ is infinite, $C\left(\left\{a_{i}, u\right\}\right)=\varepsilon_{i}$ for all elements u from V_{i+1}. If we succeed, then there exists some $i_{0} \in\{0,1\}$ such that $\varepsilon_{i}=i_{0}$ for infinitely many $i<\omega$, and then let $U=\left\{a_{i} \mid \varepsilon_{i}=i_{0}\right\}$.
Construction: let $V_{0}=V, a_{0}=b_{0}$. For some i_{0}, and infinitely many $b \in V$, $C\left(\left\{a_{0}, b\right\}\right)=i_{0}$. Let $\varepsilon_{0}=i_{0}$. Suppose we chose a_{i}, V_{i} and ε_{i} for $i \leq n$ such that everything above holds, and in addition $C\left(\left\{a_{n}, b\right\}\right)=i^{\prime}$ for some i^{\prime} and infinitely many $b \in V_{n}$. Then let V_{n+1} be this infinite set, and let a_{n+1} be some element from it. For infinitely many $b \in V_{n+1}, C\left(\left\{a_{n+1}, b\right\}\right)$ is constant, so we can continue.
(2) Deduce the finite Ramsey Theorem from the infinite one using the Compactness Theorem.
Solution: Let k be given. Let A be a set of constants, and let $L_{A}=$ $A \cup\{C\}$ where C is a binary relation. Let T_{A} be the theory axiomatized by $\{a \neq b \mid a \neq b \in A\}, C$ is symmetric and anti-reflexive (so an infinite graph), and for every $\left\{a_{0}, \ldots, a_{k-1}\right\} \subseteq A$, the sentence

$$
\bigvee_{s_{1}<s_{2}<k, t_{1}<t_{2}<k}\left(C\left(a_{s_{1}}, c_{s_{2}}\right) \wedge \neg C\left(c_{t_{1}}, c_{t_{2}}\right)\right) .
$$

I claim that T_{A} is consistent iff there is a coloring $C: A^{[2]} \rightarrow\{0,1\}$ with no monochromatic set of size k : Given a model M of T_{A}, define $C(\{a, b\})=1$ iff $C^{M}(a, b)$. On the other hand, if there is such a coloring C, define $M=A$ with $C^{M}(a, b)$ iff $C(\{a, b\})=1$.
Let A be $\left\{c_{i} \mid i<\omega\right\}$. By the infinite Ramsey, T_{A} is not consistent, so there is some n such that if $A_{0}=\left\{c_{i} \mid i<n\right\}$ then $T_{A_{0}}$ is inconsistent, i.e. every coloring of $A_{0}^{[2]}$ has a monochromatic subset of size k (and so all sets of size $n)$.
Remark: there exists a proof that uses only induction on natural numbers.

Question 3.

Show that if $G=(V, E)$ is an infinite graph such that every finite sub graph of it is n-colorable then G is n-colorable.
Solution: Let $L=\left\{c_{a} \mid a \in V\right\} \cup\{f\} \cup\left\{d_{0}, \ldots, d_{n-1}\right\}$ where c, d are constants and f is a unary function symbol. Let T be the theory saying that $c_{a} \neq c_{b}$ for $a \neq b, f(x) \in\left\{d_{0}, \ldots, d_{n-1}\right\}$ for all x. For all a, b such that $a E b$, add a sentence $f\left(c_{a}\right) \neq f\left(c_{b}\right)$. Then T has a model iff G is n-colorable. If T is inconsistent, then some finite subset of it is already inconsistent, i.e. there is some finite $V_{0} \subseteq V$ such that if $G_{0}=\left(V_{0}, E \upharpoonright V_{0}\right)$ then $T_{G_{0}}$ is not consistent. But then G_{0} is not n-colorable - contradiction.

Question 4.

Show that the following are equivalent:
(1) The Compactness Theorem.
(2) Let T_{1}, T_{2} be sets of L-sentences. Assume that for every L-structure M, M is a model of T_{1} iff M is not a model of T_{2}. Then there are some finite $\Sigma_{1} \subseteq T_{1}, \Sigma_{2} \subseteq T_{2}$ such that $\Sigma_{1} \equiv T_{1}, \Sigma_{2} \equiv T_{2}$ (i.e. $\Sigma_{1} \models T_{1}, \Sigma_{2} \models T_{2}$).
Solution: (1) to (2) The assumption says that $T_{1} \cup T_{2}$ is inconsistent. So there is some $\Sigma_{1} \subseteq T_{1}, \Sigma_{2} \subseteq T_{2}$ such that $\Sigma_{1} \cup \Sigma_{2}$ is inconsistent. If $M \models \Sigma_{1}$ then $M \not \models \Sigma_{2}$, so it cannot be that $M \models T_{2}$, so $M \models T_{1}$, i.e. $\Sigma_{1} \models T_{1}$. For Σ_{2}, T_{2} it's the same.
(3) Let T_{1}, T_{2} be sets of L-sentences. Assume that T_{2} is finite and that $T_{1} \equiv T_{2}$. Then T_{1} is finitely axiomatizable (i.e. there is some finite $\Sigma \subseteq T_{1}$ such that $\left.\Sigma \equiv T_{1}\right)$.
Solution: (2) to (3): let $\alpha=\bigwedge T_{2}$. Then for every structure M, M is a model of T_{1} iff $M \models \alpha$ iff M is not a model of $\neg \alpha$. By (1), there is some finite Σ_{1} equivalent to T_{1}.
(3) to (1): Assume that Σ is a set of sentences with no model. Then $\Sigma \equiv$ $\{\perp\}$ (where \perp is always interpreted as false, can be replaced by $\forall x(x \neq x)$). By (2), there is some finite $\Sigma_{0} \subseteq \Sigma$ which is inconsistent.

