Fachbereich

Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Katharina Dupont
Gabriel Lehéricy

Real Algebraic Geometry II Exercise Sheet 10

Definition: An ordered field K is root closed for positive elements, if for every $n \in \mathbb{N}$ and every $x \in K^{>0}$ there exists $y \in K$ such that $y^{n}=x$.

Definition: Let K be an ordered field and v the natural valuation on K.
$S \subseteq K^{>0}$ is called value group section, if there exists an order preserving embedding $t: v\left(K^{\times}\right) \hookrightarrow K^{>0}$ with $v(t(g))=g$ for all $g \in v\left(K^{\times}\right)$, such that $S=t\left(v\left(K^{\times}\right)\right)$.

Definition: Let K be an ordered field, v the natural valuation on K and k the residue field of $(K, v) . T \subseteq K$ is called residue field section, if there exists an order preserving embedding $\iota: k \hookrightarrow K$ with $\iota(c)=c$ for all $c \in K$, such that $T=\iota(k)$.

Exercise 1

Let K be an ordered field. Let K be root closed for positive elements. Let v be the natural valuation on K.
(a) Show that (K, v) admits a value group section.
(b) Assume in addition that K is real closed. Show that K admits a residue field section.

Definition: Let K and L be fields. We extend addition and multiplication from L to $L \cup\{\infty\}$ as follows.
For $a \in L$ and $b \in L \backslash\{0\}$

$$
\begin{aligned}
\infty+a & :=a+\infty \\
\infty \cdot b & :=\infty \cdot \infty \quad:=\infty \\
\infty \cdot \infty & :=\quad \infty
\end{aligned}
$$

We will not define $\infty+\infty, \infty \cdot 0$ and $0 \cdot \infty$.

A map

$$
\varphi: K \longrightarrow L \cup\{\infty\}
$$

is called place (German Stelle) on K, if for all $x, y \in K$ the following is true whenever the right side is defined:
(i) $\varphi(x+y)=\varphi(x)+\varphi(y)$
(ii) $\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)$
(iii) $\varphi(1)=1$.

Exercise 2

Let K be a field.
(a) Assume L is a field and $\varphi: K \longrightarrow L \cup\{\infty\}$ is a place on K. Show that

$$
\mathcal{O}:=\varphi^{-1}(L)
$$

is a valuation ring on K with maximal ideal

$$
\mathcal{M}=\varphi^{-1}(\{0\})
$$

and residue field

$$
\mathcal{O} / \mathcal{M} \cong \varphi(\mathcal{O})
$$

(b) Let \mathcal{O} be a valuation ring on K with maximal ideal \mathcal{M}. Let

$$
\widetilde{\varphi}: \mathcal{O} \rightarrow \mathcal{O} / \mathcal{M}
$$

be the residue map of (K, \mathcal{O}). Define

$$
\varphi: K \longrightarrow \mathcal{O} / \mathcal{M} \cup\{\infty\}
$$

by

$$
\varphi(x):= \begin{cases}\widetilde{\varphi}(x), & x \in \mathcal{O} \\ \infty, & x \notin \mathcal{O}\end{cases}
$$

for $x \in K$.
Show that φ is a place on K.
Definition: Let (K, \mathcal{O}) be a valued field. The place as in Exercise 2 (b) is called the canonical place of \mathcal{O}.

Exercise 3

Let (K, \leq) be an ordered field. Let v be a valuation on K with valuation ring \mathcal{O}, maximal ideal \mathcal{M} and residue field \bar{K}. Let $\varphi: \mathcal{O} \rightarrow \bar{K}$ be the canonical place of \mathcal{O}.
Show that the following are equivalent
(i) If $a, b \in K$ with $0<a<b$, then $v(a) \geq v(b)$.
(ii) \mathcal{M} is convex in (K, \leq).
(iii) \mathcal{O} is convex in (K, \leq).
(iv) $\bar{P}:=\left\{p+\mathcal{M} \mid p \in K^{\geq 0} \cap \mathcal{O}\right\}$ is an ordering on \bar{K}.
(v) If $x, y \in \mathcal{O}$ with $x \leq y$, then $\varphi(y)-\varphi(x) \in \bar{P}$.
(vi) $1+\mathcal{M} \subseteq K^{>0}$.
(vii) If $x \in \mathcal{M}$, then $|x|<q$ for all $q \in \mathbb{Q}$ (where \mid. \mid is the absolute value induced by \leq).

The exercise will be collected Thursday, 25/06/2015 until 10.00 at box 13 near F 441.
http://www.math.uni-konstanz.de/~ dupont/rag.htm

