Universität Konstanz

Fachbereich Mathematik und Statistik

Prof. Dr. Salma Kuhlmann Katharina Dupont Gabriel Lehéricy

Real Algebraic Geometry II Exercise Sheet 11

Exercise 1

Let (K, \leq) be an ordered field. Let \mathcal{O} be a valuation ring on K and \mathcal{M} the maximal ideal of \mathcal{O} . Let \mathcal{T}_{\leq} be the topology induced by \leq given by the basis

$$\begin{aligned} \mathcal{B}_{\leq} &:= \{ (a,b) \mid a, b \in K, a < b, \} \\ &:= \{ \{ x \in K \mid a < x < b \} \mid a, b \in K, a < b, \} \end{aligned}$$

and Let $\mathcal{T}_{\mathcal{O}}$ be the topology induced by \mathcal{O} given by the basis

 $\mathcal{B}_{\mathcal{O}} := \{ x \cdot \mathcal{M} + y \mid x, y \in K, x \neq 0 \}.$

- (a) Assume $\mathcal{T}_{\leq} = \mathcal{T}_{\mathcal{O}}$. Show that there exists a non-trivial coarsening $\widetilde{\mathcal{O}}$ of \mathcal{O} , such that $\widetilde{\mathcal{O}}$ is convex in (K, \leq) .
- (b) Assume \mathcal{O} is convex in (K, \leq) . Show that $\mathcal{T}_{\leq} = \mathcal{T}_{\mathcal{O}}$.

Hint: Find $a, b, c, d \in K$ with a < b and c < d, such that $(a, b) \subseteq \mathcal{M} \subseteq (c, d)$. Now find $a, b \in K$ with a < b, such that $(a, b) \subseteq x \cdot \mathcal{M} + y$ for $x, y \in K$ with x > 0 and $u, v \in K$ with $u \neq 0$, such that $u \cdot \mathcal{M} + v \subseteq (c, d)$ for $c, d \in K$ with c < d. Conclude $\mathcal{T}_{\leq} = \mathcal{T}_{\mathcal{O}}$.

Exercise 2

Let K be a field. Let v and v' be two valuations on K with valuation rings \mathcal{O}_v and $\mathcal{O}_{v'}$, maximal ideals \mathcal{M}_v and $\mathcal{M}_{v'}$ and residue fields K_v and $K_{v'}$.

(a) Show that the following are equivalent

- (i) $\mathcal{O}_{v'}$ is a coarsening of \mathcal{O}_{v} .
- (ii) $\mathcal{M}_{v'} \subseteq \mathcal{M}_{v}$.
- (iii) For all $a, b \in K$ if $v(a) \le v(b)$, then $v'(a) \le v'(b)$.

(b) Assume that $\mathcal{O}_{v'}$ is a coarsening of \mathcal{O}_v . Let $\varphi : \mathcal{O}_{v'} \to K_{v'}$ be the residue map of v'. Let $\overline{\mathcal{O}_v} = \varphi(\mathcal{O}_v)$ be the image of \mathcal{O}_v under φ . Show that $K_{v'}/K_v$ is a field extension and $\overline{\mathcal{O}_v}$ is a valuation on $K_{v'}$.

Exercise 3

(a) Let $K := \mathbb{R}((\mathbb{Q} \times \mathbb{R}))$. Consider the lexicographic order on $\mathbb{Q} \times \mathbb{R}$. Let $C = \{(0, z) \mid z \in \mathbb{R}\}.$

Compute the convex valuation associated to C, its value group and its residue field. Conclude that $\operatorname{rank}(\mathbb{R}((\mathbb{Q} \times \mathbb{R}))) = 2$.

(b) Let $K = \mathbb{R}(t)$. Show that for any ordering on K the rank of K is a singleton with $\mathcal{R} = \{K\}$.

The exercise will be collected **Thursday**, 02/07/2015 until 10.00 at box 13 near F 441.

http://www.math.uni-konstanz.de/~ dupont/rag.htm