Universität Konstanz

Fachbereich Mathematik und Statistik

Prof. Dr. Salma Kuhlmann Katharina Dupont Gabriel Lehéricy

Real Algebraic Geometry II Exercise Sheet 3

Exercise 1

Let (V, v) and (V_0, v_0) be valued vector spaces with $S(V) = S(V_0)$. Assume that $h: (V_0, v_0) \xrightarrow{\sim} (V, v)$ is a value preserving isomorphism and $\mathcal{B}_0 \subseteq V_0 \setminus \{0\}$. Show that

- (a) \mathcal{B}_0 is valuation independent if and only if $h(\mathcal{B}_0)$ is valuation independent.
- (b) \mathcal{B}_0 is a valuation basis for (V_0, v_0) if and only if $h(\mathcal{B}_0)$ is a valuation basis for (V, v).

Exercise 2

Let (V, v) and (V_0, v_0) be Q-valued vector spaces with $S(V) = S(V_0)$. Let $\mathcal{B}_0 \subseteq V_0 \setminus \{0\}$ be a valuation basis for (V_0, v_0) and $h : \mathcal{B}_0 \longrightarrow \mathcal{B} \subseteq V$ be a value preserving bijection such that \mathcal{B} is a valuation basis for (V, v). Extend h to a Q-vector space isomorphism $h : V_0 \longrightarrow V$ by linearity. Show that h is valuation preserving.

Terminology:

- *h* is a value preserving bijection if $v(h(b)) = v_0(b)$ for all $b \in \mathcal{B}_0$.
- We extend h to a Q-vector space isomorphism $h: V_0 \longrightarrow V$ by linearity by setting $h(x) = h(\sum q_i b_i) := \sum q_i h(b_i)$ for all $x = \sum q_i b_i$.
- h is valuation preserving if $h : V_0 \longrightarrow V$ is a Q-valued vector space isomorphism.

Exercise 3

Consider the vector space $(V, v) = (\mathbf{H}_{\gamma \in \mathbb{N}} B_{\gamma}, v_{\min}).$

- (a) Let $B_{\gamma} := \mathbb{Q}$ for all $\gamma \in \mathbb{N}$. Describe a maximal valuation independent set \mathcal{B} such that support(b) is a singleton for every $b \in \mathcal{B}$.
- (b) Let B_γ := Q for all γ ∈ N. Describe a maximal valuation independent set B such that support(b) is infinite for every b ∈ B.
- (c) Let $B_{\gamma} := \mathbb{R}$ for all $\gamma \in \mathbb{N}$. Describe a maximal valuation independent set \mathcal{B} such that support(b) is a singleton for every $b \in \mathcal{B}$.
- (d) Let $B_{\gamma} := \mathbb{R}$ for all $\gamma \in \mathbb{N}$. Describe a maximal valuation independent set \mathcal{B} such that support(b) is infinite for every $b \in \mathcal{B}$.
- (e) Let B_γ := Q for all γ ∈ N even and let B_γ := R for all γ ∈ N odd. Describe a maximal valuation independent set B such that support(b) is infinite for every b ∈ B.

The exercise will be collected **Thursday**, 07/05/2015 until 10.00 at box 13 near F 441.

http://www.math.uni-konstanz.de/~ dupont/rag.htm