Universität Konstanz

Fachbereich
Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Katharina Dupont
Gabriel Lehéricy

Real Algebraic Geometry II Exercise Sheet 3

Exercise 1

Let (V, v) and $\left(V_{0}, v_{0}\right)$ be valued vector spaces with $S(V)=S\left(V_{0}\right)$. Assume that $h:\left(V_{0}, v_{0}\right) \xrightarrow{\sim}(V, v)$ is a value preserving isomorphism and $\mathcal{B}_{0} \subseteq V_{0} \backslash\{0\}$. Show that
(a) \mathcal{B}_{0} is valuation independent if and only if $h\left(\mathcal{B}_{0}\right)$ is valuation independent.
(b) \mathcal{B}_{0} is a valuation basis for $\left(V_{0}, v_{0}\right)$ if and only if $h\left(\mathcal{B}_{0}\right)$ is a valuation basis for (V, v).

Exercise 2

Let (V, v) and $\left(V_{0}, v_{0}\right)$ be Q-valued vector spaces with $S(V)=S\left(V_{0}\right)$. Let $\mathcal{B}_{0} \subseteq V_{0} \backslash\{0\}$ be a valuation basis for $\left(V_{0}, v_{0}\right)$ and $h: \mathcal{B}_{0} \longrightarrow \mathcal{B} \subseteq V$ be a value preserving bijection such that \mathcal{B} is a valuation basis for (V, v). Extend h to a Q-vector space isomorphism $h: V_{0} \longrightarrow V$ by linearity.
Show that h is valuation preserving.

Terminology:

- h is a value preserving bijection if $v(h(b))=v_{0}(b)$ for all $b \in \mathcal{B}_{0}$.
- We extend h to a Q-vector space isomorphism $h: V_{0} \longrightarrow V$ by linearity by setting $h(x)=h\left(\sum q_{i} b_{i}\right):=\sum q_{i} h\left(b_{i}\right)$ for all $x=\sum q_{i} b_{i}$.
- h is valuation preserving if $h: V_{0} \longrightarrow V$ is a Q-valued vector space isomorphism.

Exercise 3

Consider the vector space $(V, v)=\left(\mathbf{H}_{\gamma \in \mathbb{N}} B_{\gamma}, v_{\text {min }}\right)$.
(a) Let $B_{\gamma}:=\mathbb{Q}$ for all $\gamma \in \mathbb{N}$. Describe a maximal valuation independent set \mathcal{B} such that support (b) is a singleton for every $b \in \mathcal{B}$.
(b) Let $B_{\gamma}:=\mathbb{Q}$ for all $\gamma \in \mathbb{N}$. Describe a maximal valuation independent set \mathcal{B} such that support (b) is infinite for every $b \in \mathcal{B}$.
(c) Let $B_{\gamma}:=\mathbb{R}$ for all $\gamma \in \mathbb{N}$. Describe a maximal valuation independent set \mathcal{B} such that support (b) is a singleton for every $b \in \mathcal{B}$.
(d) Let $B_{\gamma}:=\mathbb{R}$ for all $\gamma \in \mathbb{N}$. Describe a maximal valuation independent set \mathcal{B} such that support (b) is infinite for every $b \in \mathcal{B}$.
(e) Let $B_{\gamma}:=\mathbb{Q}$ for all $\gamma \in \mathbb{N}$ even and let $B_{\gamma}:=\mathbb{R}$ for all $\gamma \in \mathbb{N}$ odd. Describe a maximal valuation independent set \mathcal{B} such that support (b) is infinite for every $b \in \mathcal{B}$.

The exercise will be collected Thursday, 07/05/2015 until 10.00 at box 13 near F 441.
http://www.math.uni-konstanz.de/~ dupont/rag.htm

