$Hf\in Hv(f)v(H)$

2Let $k \subseteq$ be a field and G an ordered abelian group. Let K = k((G)) be the field of generalized power series endow [(a)] Verify that $v(^{\times}) \cong G$. Let $s = \sum_{g \in G} s(g)t^g \in \mathcal{O}_v$. Show that for the residue \overline{s} of s we have $\overline{s} = s(v(s))$. Conclude t

- for $\alpha \in^{>0}$ and $(\alpha)_n := \alpha \cdot (\alpha 1) \cdots (\alpha n + 1)$. Then prove that for $\varepsilon \in$ with $v(\varepsilon) > 0$ we have $(1 + \varepsilon)^{\frac{1}{2}} = \sqrt{1 + \varepsilon}$. **Definition:** [(a)]Let G be an abelian group and $p \in$ prime. G is called p divisible if for every $g \in G$ there exists $h \in G$ such that $g = \frac{11/06}{2015}$