2Let $k \subseteq$ be a field and G an ordered abelian group. Let $K=k((G))$ be the field of generalized power series endow $[(\mathrm{a})]$ Verify that $v\left(^{\times}\right) \cong G$. Let $s=\sum_{g \in G} s(g) t^{g} \in \mathcal{O}_{v}$. Show that for the residue \bar{s} of s we have $\bar{s}=s(v(s))$. Conclude t
for $\alpha \epsilon^{>0}$ and $(\alpha)_{n}:=\alpha \cdot(\alpha-1) \cdots(\alpha-n+1)$. Then prove that for $\varepsilon \in$ with $v(\varepsilon)>0$ we have $(1+\epsilon)^{\frac{1}{2}}=\sqrt{1+\varepsilon}$. Definition:
[(a)]Let G be an abelian group and $p \in$ prime. G is called p divisible if for every $g \in G$ there exists $h \in G$ such that $g=$ 11/06/2015

