6. Script zur Vorlesung: Lineare Algebra II

Prof. Dr. Salma Kuhlmann, Dr. Lorna Gregory

SS 2012: 5. Mai 2012 - Vertretung: Lorna Gregory

Notation: Throughout, let $\mathbb{N}_{n}:=\{1, \ldots, n\}$.
Definition 0.1. Let $n \in \mathbb{N}$. A permutation of \mathbb{N}_{n} is a bijection $\mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$. We write S_{n} for the set of permutations of \mathbb{N}_{n}. The set S_{n} together the function

$$
S_{n} \times S_{n} \rightarrow S_{n}
$$

that maps (α, β) to the composition of functions $\alpha \circ \beta$ is a group. We call this group the symmetric group on n elements.
Why is S_{n} a group?
(i) If $\alpha, \beta \in \mathrm{S}_{n}$ then $\alpha \circ \beta$ is bijective and thus $\alpha \circ \beta \in \mathrm{S}_{n}$.
(ii) The identity map $\epsilon: \mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$, defined by $\epsilon(i):=i$ for all $i \in \mathbb{N}_{n}$, is the identity element for S_{n}.
(iii) Bijective maps have inverses. If $\alpha \in S_{n}$ then there exists $\beta \in S_{n}$ such that $\alpha \circ \beta=\epsilon$.
(iv) Multiplication is associative since function composition is always associative.
Notation: From now on, for $\alpha, \beta \in \mathrm{S}_{n}$ we will write $\alpha \beta$ to mean $\alpha \circ \beta$. For a permutation σ of \mathbb{N}_{n}, we write:

$$
\left(\begin{array}{ccccc}
1 & 2 & \ldots & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \ldots & \sigma(n)
\end{array}\right) .
$$

Example: The permutation $\sigma \in \mathrm{S}_{5}$ with $\sigma(1)=3, \sigma(2)=5, \sigma(3)=$ $4, \sigma(4)=1, \sigma(5)=2$ is written

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 4 & 1 & 2
\end{array}\right)
$$

Definition 0.2. If $\sigma \in S_{n}$ has the property that there exist $a_{1}, \ldots, a_{m} \in$ \mathbb{N}_{n} such that

$$
\begin{array}{ll}
\sigma\left(a_{i}\right)=a_{i+1}, & \text { for } 1 \leq i \leq m-1 \\
\sigma\left(a_{m}\right)=a_{1}, & \text { for } x \notin\left\{a_{1}, \ldots, a_{m}\right\} .
\end{array}
$$

we say σ is an m-cycle and write σ in cycle notation as $\left(a_{1} a_{2} \ldots a_{m}\right)$. A transposition is a 2-cycle.

Example: The permutation

$$
\sigma:=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right)
$$

is a 3 -cycle. We write σ in cycle notation as (142).
Definition 0.3. We say $\alpha, \beta \in S_{n}$ are disjoint if,

$$
\{x \mid \alpha(x) \neq x\} \cap \underset{1}{\{x \mid \beta(x) \neq x\}=\emptyset .}
$$

Example: Let

$$
\begin{aligned}
\sigma & :=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right), \\
\tau & :=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)
\end{aligned}
$$

and

$$
\gamma:=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 2 & 4
\end{array}\right) .
$$

The permutations σ and τ are disjoint but σ and γ are not disjoint.
Lemma 0.4. Let $\alpha_{1}, \ldots, \alpha_{m} \in S_{n}$ be pairwise disjoint permutations and let $\tau \in S_{n}$. The permutations $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ and τ are disjoint if and only if α_{i} and τ are disjoint for all $0<i \leq m$.

Proof. See exercise sheet.
Proposition 0.5. Every $\sigma \in S_{n}$ can be written as a product of disjoint cycles.

Proof. Fix $n \in \mathbb{N}$. We shall prove the statement by induction on

$$
\Gamma(\sigma):=\left|\left\{a \in \mathbb{N}_{n} \mid \sigma(a) \neq a\right\}\right| .
$$

If $\Gamma(\sigma)=0$ then σ is the identity map on \mathbb{N}_{n} so $\sigma=(1)(2) \ldots(n)$.
Let $\sigma \in \mathrm{S}_{n}$. Suppose $k=\Gamma(\sigma)>0$ and suppose the assertion is true for all permutations τ with $\Gamma(\tau)<k$.
Let $i_{0} \in \mathbb{N}_{n}$ be such that $\sigma\left(i_{0}\right) \neq i_{0}$. Let $i_{s}:=\sigma^{s}\left(i_{0}\right)$. Since \mathbb{N}_{n} is finite, there exists $p, q \in \mathbb{N}$ with $p<q$ such that $\sigma^{p}\left(i_{0}\right)=\sigma^{q}\left(i_{0}\right)$. Since σ is bijective, $\sigma^{p-q}\left(i_{0}\right)=i_{0}$. Take $r \in \mathbb{N}$ least such that $\sigma^{r+1}\left(i_{0}\right)=i_{0}$. Let τ be the $r+1$-cycle, $\left(i_{0} i_{1} \ldots i_{r}\right)$.
Now

$$
\left\{a \in \mathbb{N}_{n} \mid\left(\tau^{-1} \sigma\right)(a)=a\right\}=\left\{a \in \mathbb{N}_{n} \mid \sigma(a)=a\right\} \cup\left\{i_{0}, \ldots, i_{r}\right\} .
$$

So $\Gamma\left(\tau^{-1} \sigma\right)<k=\Gamma(\sigma)$.
So, by the induction hypothesis, $\tau^{-1} \sigma$ can be written as a product of pairwise disjoint cycles, say $\tau^{-1} \sigma=\alpha_{1} \alpha_{2} \ldots \alpha_{m}$. So $\sigma=\tau \alpha_{1} \alpha_{2} \ldots \alpha_{m}$. Since $\alpha_{1} \alpha_{2} \ldots \alpha_{m}\left(i_{j}\right)=\tau^{-1} \sigma\left(i_{j}\right)=i_{j}$ for $0 \leq j \leq m$, the permutations $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ and τ are disjoint. By the lemma, this means τ and α_{i} are disjoint for $0<i \leq m$. So σ is a product of disjoint cycles.

Example: The permutation

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 4 & 1 & 2
\end{array}\right)
$$

written as a product of disjoint cycles is

$$
(134)(25) .
$$

Notation:

Proposition 0.6. Every permutation on \mathbb{N}_{n} can be written as a product of transpositions.
Proof. The identity is $(12)(21)$.
Since every permutation can be written as a product of cycles, it is enough to show that every cycle can be written as a product of transpositions. Let $\left(i_{1} \ldots i_{r}\right) \in \mathrm{S}_{n}$ be an r-cycle. Then

$$
\left(i_{1} i_{2} \ldots i_{r}\right)=\left(i_{1} i_{r}\right)\left(i_{1} i_{r-1}\right) \ldots\left(i_{1} i_{3}\right)\left(i_{1} i_{2}\right)
$$

For i_{1},

$$
\left(i_{1} i_{r}\right)\left(i_{1} i_{r-1}\right) \ldots\left(i_{1} i_{3}\right)\left(i_{1} i_{2}\right) i_{1}=\left(i_{1} i_{r}\right)\left(i_{1} i_{r-1}\right) \ldots\left(i_{1} i_{3}\right) i_{2}=i_{2}
$$

For $s>1$,

$$
\begin{aligned}
\left(i_{1} i_{r}\right)\left(i_{1} i_{r-1}\right) \ldots\left(i_{1} i_{3}\right)\left(i_{1} i_{2}\right) i_{s} & =\left(i_{1} i_{r}\right)\left(i_{1} i_{r-1}\right) \ldots\left(i_{1} i_{s+1}\right)\left(i_{1} i_{s}\right) i_{s} \\
& =\left(i_{1} i_{r}\right)\left(i_{1} i_{r-1}\right) \ldots\left(i_{1} i_{s+2}\right)\left(i_{1} i_{s+1}\right) i_{1} \\
& =\left(i_{1} i_{r}\right)\left(i_{1} i_{r-1}\right) \ldots\left(i_{1} i_{s+2}\right) i_{s+1} \\
& =i_{s+1}
\end{aligned}
$$

Example: The permutation $(123) \in \mathrm{S}_{4}$ can be written as both

$$
(13)(12)
$$

and

$$
(13)(42)(12)(14)
$$

So factorisation into transpositions is not unique, even more, the number of transpositions used in a factorisation is not unique. So, what is unique?
In order to answer this question we first need to define the action of a permutation $\sigma \in \mathrm{S}_{n}$ on a function from \mathbb{Z}^{n} to \mathbb{Z}. (Reminder $\mathbb{Z}^{n}:=\underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n \text {-times }})$.
Let $\sigma \in \mathrm{S}_{n}$ and $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ be a function. We define σf to be the function from $\mathbb{Z}^{n} \rightarrow \mathbb{Z}$ defined by

$$
(\sigma f)\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

Example: Let $f: \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ be the function defined by $f\left(x_{1}, x_{2}, x_{3}\right):=$ $x_{1} x_{2}+x_{3}$ and $\sigma:=(123) \in \mathrm{S}_{3}$. The function

$$
(\sigma f)\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{2}, x_{3}, x_{1}\right)=x_{2} x_{3}+x_{1} .
$$

Lemma 0.7. Let $\sigma, \tau \in S_{n}$ and $f, g: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$. Then
(i) $\sigma(\tau f)=(\sigma \tau) f$
(ii) $\sigma(f g)=(\sigma f)(\sigma g)$

Proof. See exercise sheet.

Theorem 0.8. There is a map sign: $S_{n} \rightarrow\{1,-1\}$ such that:
(a) For every transposition $\tau \in S_{n}, \operatorname{sign}(\tau)=-1$.
(b) For permutations σ, σ^{\prime}

$$
\operatorname{sign}\left(\sigma \sigma^{\prime}\right)=\operatorname{sign}(\sigma) \operatorname{sign}\left(\sigma^{\prime}\right) .
$$

This function is unique with these properties. For $\sigma \in S_{n}$, we call $\operatorname{sign}(\sigma)$ the signature of σ.

Proof. Fix $n \in \mathbb{N}$. Let $\Delta: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ be the function defined by

$$
\Delta\left(x_{1}, \ldots, x_{n}\right):=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

Claim: For a transposition $\tau \in \mathrm{S}_{n}, \tau \Delta=-\Delta$.
Let $\tau=(r s)$ with $r<s$.
By lemma 0.7(i)

$$
\tau \Delta\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n} \tau\left(x_{j}-x_{i}\right)
$$

Clearly, if $i, j \notin\{r, s\}$ then $\tau\left(x_{j}-x_{i}\right)=\left(x_{j}-x_{i}\right)$.
For the factor $\left(x_{s}-x_{r}\right)$, we have that $\tau\left(x_{s}-x_{r}\right)=-\left(x_{r}-x_{s}\right)$.
The remaining factors can be put into pairs as follows:

$$
\begin{array}{ll}
\left(x_{k}-x_{s}\right)\left(x_{k}-x_{r}\right), & \text { if } k>s ; \\
\left(x_{s}-x_{k}\right)\left(x_{k}-x_{r}\right), & \text { if } r<k<s ; \\
\left(x_{s}-x_{k}\right)\left(x_{r}-x_{k}\right), & \text { if } k<r .
\end{array}
$$

Each pair is unaffected by τ.
Therefore $\tau \Delta=-\Delta$. So we have proved the claim.
Now suppose $\sigma \in S_{n}$. We can write $\sigma=\tau_{1} \ldots \tau_{m}$ where $\tau_{1}, \ldots, \tau_{m}$ are transpositions. By lemma 0.7(ii),

$$
\sigma \Delta=\tau_{1}\left(\tau_{2}\left(\ldots\left(\tau_{m} \Delta\right) \ldots\right)\right)
$$

and by the claim

$$
\tau_{1}\left(\tau_{2}\left(\ldots\left(\tau_{m} \Delta\right) \ldots\right)\right)=(-1)^{m} \Delta .
$$

So $\sigma \Delta=\Delta$ or $\sigma \Delta=-\Delta$.
For $\sigma \in \mathrm{S}_{n}$, let $\operatorname{sign}(\sigma)=+1$ if $\sigma \Delta=\Delta$ and let $\operatorname{sign}(\sigma)=-1$ if $\sigma \Delta=-\Delta$. This map is well-defined since $\Delta(1,2, \ldots, n) \neq 0$.

Let $\sigma, \tau \in \mathrm{S}_{n}$. By lemma 0.7(i),

$$
(\sigma \tau) \Delta=\sigma(\tau \Delta)
$$

So

$$
\operatorname{sign}(\sigma \tau)=\operatorname{sign}(\sigma) \operatorname{sign}(\tau)
$$

The function sign : $\mathrm{S}_{n} \rightarrow\{1,-1\}$ is unique with properties (a) and (b) since every permutation is a product of transpositions.

Remark: Let $\sigma \in \mathrm{S}_{n}$ and let $\tau_{1}, \ldots, \tau_{m} \in \mathrm{~S}_{n}$ be transpositions such that $\sigma=\tau_{1} \ldots \tau_{m}$. Then

$$
\operatorname{sign}(\sigma)=(-1)^{m}
$$

Definition 0.9. We call a permutation even if it can be written as a product of an even number of transpositions.
We call a permutation odd if it can be written as a product of an odd number of transpositions.

Corollary 0.10. A permutation σ is even if and only if $\operatorname{sign}(\sigma)=1$ and is odd if and only if $\operatorname{sign}(\sigma)=-1$. Thus, a permutation can not be written as both a product of an even number transpositions and an odd number of transpositions.

