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Notation: Throughout, let N,, ,: {1, ...,n}.

Definition O.L. Let n € N. A per-rnutat'i,an o./ N," i,s a bi,jecti,on

N,, -+N,,. Wewrite Sn for the set of permutati,ons aJ N,,. The set Sn

together the function' 
sn x sn--) s,

that maps (*,13) to the compos'it'ian of functi,ons a o § i,s a group. We

call th.i,s group the sgrnm,etri'e group on n elements.

Why is S,, a group?
(i) If a,6 e S, then aod is bijective and thus aoB € S*.

(ä) The identity map 6 : N. + N,,, defined by e(i') :: d for all
i e N*, is the identity element for S,,.

(iü) Bijective maps have inverses. If a € S,, then there exists § e S"
suchthatao0:t.

(iv) Multiplication is associative since function composition is al-

ways associative.

Notation: From now on, for a, § € S, we will write a§ to rlrean ao 13.

For a permutation o of NI,r, we write:

(1 2 n \
\ o(r) o(2) "fu) )'

Example: The permutation a € Ss with o(1) : 3, a(2) : 5, a(3) :
4,o{4) : 1, o(5) : 2 is written

/t2J45\
(s b 412)

Definition A.2. If o e Sn has the property that there erist av---,&* e
Nn such that

o(a.1) -- ai',1, for 11i, 1m * 1;

o(a*): a1,

and o(r) : x, for r ( {at' "''&*)'
we s(ry o i,s an m-cycle and write o i,n cgcle notation as (a1a2..-.a*) '

A transposi,ti,on i,s a Z-cycle.

Example; The permutation

/ t 2 3 4\
'':\n , z z)

is a 3-cycle. We write o in cycle riotation as (142).

Definition O.3. We s&A a) § e S* are disioint if,

{r I a(r) I "} n {" I §(") l r} : Ü.
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Example: Let

σ :=

(
1 2 3 4
2 1 3 4

)
,

τ :=

(
1 2 3 4
1 2 4 3

)
and

γ :=

(
1 2 3 4
1 3 2 4

)
.

The permutations σ and τ are disjoint but σ and γ are not disjoint.

Lemma 0.4. Let α1, ..., αm ∈ Sn be pairwise disjoint permutations and
let τ ∈ Sn. The permutations α1α2...αm and τ are disjoint if and only
if αi and τ are disjoint for all 0 < i ≤ m.

Proof. See exercise sheet. �

Proposition 0.5. Every σ ∈ Sn can be written as a product of disjoint
cycles.

Proof. Fix n ∈ N. We shall prove the statement by induction on

Γ(σ) := |{a ∈ Nn | σ(a) 6= a}|.
If Γ(σ) = 0 then σ is the identity map on Nn so σ = (1)(2)...(n).

Let σ ∈ Sn. Suppose k = Γ(σ) > 0 and suppose the assertion is true
for all permutations τ with Γ(τ) < k.
Let i0 ∈ Nn be such that σ(i0) 6= i0. Let is := σs(i0). Since Nn is finite,
there exists p, q ∈ N with p < q such that σp(i0) = σq(i0). Since σ is
bijective, σp−q(i0) = i0. Take r ∈ N least such that σr+1(i0) = i0. Let
τ be the r + 1-cycle, (i0i1...ir).
Now

{a ∈ Nn | (τ−1σ)(a) = a} = {a ∈ Nn | σ(a) = a} ∪ {i0, ..., ir}.
So Γ(τ−1σ) < k = Γ(σ).
So, by the induction hypothesis, τ−1σ can be written as a product of
pairwise disjoint cycles, say τ−1σ = α1α2...αm. So σ = τα1α2...αm.
Since α1α2...αm(ij) = τ−1σ(ij) = ij for 0 ≤ j ≤ m, the permutations
α1α2...αm and τ are disjoint. By the lemma, this means τ and αi are
disjoint for 0 < i ≤ m. So σ is a product of disjoint cycles.

�

Example: The permutation(
1 2 3 4 5
3 5 4 1 2

)



written as a product of disjoint cycles is

(134)(25).

Notation:

Proposition 0.6. Every permutation on Nn can be written as a product
of transpositions.

Proof. The identity is (12)(21).
Since every permutation can be written as a product of cycles, it is
enough to show that every cycle can be written as a product of trans-
positions. Let (i1...ir) ∈ Sn be an r-cycle. Then

(i1i2...ir) = (i1ir)(i1ir−1)...(i1i3)(i1i2).

For i1,

(i1ir)(i1ir−1)...(i1i3)(i1i2)i1 = (i1ir)(i1ir−1)...(i1i3)i2 = i2.

For s > 1,

(i1ir)(i1ir−1)...(i1i3)(i1i2)is = (i1ir)(i1ir−1)...(i1is+1)(i1is)is

= (i1ir)(i1ir−1)...(i1is+2)(i1is+1)i1

= (i1ir)(i1ir−1)...(i1is+2)is+1

= is+1

�

Example: The permutation (123) ∈ S4 can be written as both

(13)(12)

and
(13)(42)(12)(14).

So factorisation into transpositions is not unique, even more, the num-
ber of transpositions used in a factorisation is not unique. So, what is
unique?
In order to answer this question we first need to define the action
of a permutation σ ∈ Sn on a function from Zn to Z. (Reminder
Zn := Z× ...× Z︸ ︷︷ ︸

n−times

).

Let σ ∈ Sn and f : Zn → Z be a function. We define σf to be the
function from Zn → Z defined by

(σf)(x1, ..., xn) := f(xσ(1), ..., xσ(n)).

Example: Let f : Z3 → Z be the function defined by f(x1, x2, x3) :=
x1x2 + x3 and σ := (123) ∈ S3. The function

(σf)(x1, x2, x3) = f(x2, x3, x1) = x2x3 + x1.



Lemma 0.7. Let σ, τ ∈ Sn and f, g : Zn → Z. Then
(i) σ(τf) = (στ)f
(ii) σ(fg) = (σf)(σg)

Proof. See exercise sheet.
�

Theorem 0.8. There is a map sign : Sn → {1,−1} such that:

(a) For every transposition τ ∈ Sn, sign(τ) = −1.
(b) For permutations σ, σ′

sign(σσ′) = sign(σ)sign(σ′).

This function is unique with these properties. For σ ∈ Sn, we call
sign(σ) the signature of σ.

Proof. Fix n ∈ N. Let ∆ : Zn → Z be the function defined by

∆(x1, ..., xn) :=
∏

1≤i<j≤n

(xj − xi).

Claim: For a transposition τ ∈ Sn, τ∆ = −∆.
Let τ = (rs) with r < s.
By lemma 0.7(i)

τ∆(x1, ..., xn) =
∏

1≤i<j≤n

τ(xj − xi).

Clearly, if i, j /∈ {r, s} then τ(xj − xi) = (xj − xi).
For the factor (xs − xr), we have that τ(xs − xr) = −(xr − xs).
The remaining factors can be put into pairs as follows:

(xk − xs)(xk − xr), if k > s;
(xs − xk)(xk − xr), if r < k < s;
(xs − xk)(xr − xk), if k < r.

Each pair is unaffected by τ .
Therefore τ∆ = −∆. So we have proved the claim.

Now suppose σ ∈ Sn. We can write σ = τ1...τm where τ1, ..., τm are
transpositions. By lemma 0.7(ii),

σ∆ = τ1(τ2(...(τm∆)...))

and by the claim

τ1(τ2(...(τm∆)...)) = (−1)m∆.

So σ∆ = ∆ or σ∆ = −∆.

For σ ∈ Sn, let sign(σ) = +1 if σ∆ = ∆ and let sign(σ) = −1 if
σ∆ = −∆. This map is well-defined since ∆(1, 2, ..., n) 6= 0.



Let σ, τ ∈ Sn. By lemma 0.7(i),

(στ)∆ = σ(τ∆).

So
sign(στ) = sign(σ)sign(τ).

The function sign : Sn → {1,−1} is unique with properties (a) and (b)
since every permutation is a product of transpositions.

�

Remark: Let σ ∈ Sn and let τ1, ..., τm ∈ Sn be transpositions such
that σ = τ1...τm. Then

sign(σ) = (−1)m.

Definition 0.9. We call a permutation even if it can be written as a
product of an even number of transpositions.
We call a permutation odd if it can be written as a product of an odd
number of transpositions.

Corollary 0.10. A permutation σ is even if and only if sign(σ) = 1
and is odd if and only if sign(σ) = −1. Thus, a permutation can not
be written as both a product of an even number transpositions and an
odd number of transpositions.


