Algebraische Zahlentheorie Algebra B 4 - Sommersemester 2017 Prof'in Dr. Salma Kuhlmann

10. Vorlesung

1. Juni 2017

Proposition 10.1 (Transitivität von Ganzheit)

Seien $A \subseteq B \subseteq C$ Integritätsbereiche. Aus B ganz über A und C ganz über B folgt C ganz über A.

Für den Beweis brauchen wir:

Lemma 10.2

Seien $A \subseteq B \subseteq C$ Ringerweiterungen. Aus B endlich erzeugt als A-Modul und C endlich erzeugt als B-Modul folgt C endlich erzeugt als A-Modul.

Beweis. Seien $\{\beta_1, \ldots, \beta_m\}$ erzeugend für B als A-Modul und $\{\gamma_1, \ldots, \gamma_n\}$ erzeugend für C als B-Modul. Dann ist $\{\beta_i \gamma_j\}$ erzeugend für C als A-Modul.

Lemma 10.3

Sei $B = A[\beta_1, \ldots, \beta_m]$ eine Ringerweiterung, mit β_i ganz über $A \ \forall i = 1, \ldots, m$. Dann ist B ganz über A und B ist endlich erzeugt als A-Modul.

Beweis. Induktion nach m. Induktionsanfang m=1: Seien $\beta=\beta_1,\ \beta$ ganz über A, und $a_i\in A$, so daß $\beta^n+\cdots+a_n=0$

Behauptung: $1, \beta, \beta^2, \dots, \beta^{n-1}$ erzeugen $B = A[\beta]$ als A-Modul.

Beweis. Weil $\beta^n \in \sum_{i=0}^{n-1} A\beta^i$, kann man ein Element b aus $A[\beta]$ als

$$(*) b = c_0 + c_1 \beta + \dots + c_N \beta^N \quad (c_i \in A)$$

umschreiben, indem man $c_N\beta^N$ als A-lineare Kombination der $\beta^0, \ldots, \beta^{n-1}$ schreibt und in (*) ersetzt usw...

Induktionsschritt: schreibe
$$B = A[\beta_1, \dots, \beta_{m-1}, \beta_m] = \underbrace{A[\beta_1, \dots, \beta_{m-1}]}_{:=D} [\beta_m]$$

D ist endlich erzeugt als A-Modul per Induktionsannahme und $B = D[\beta_m]$ ist endlich erzeugt als D-Modul per Induktionsanfang, da β_m a fortiori auch ganz über D ist, also sind $A \subseteq D \subseteq B$ wie in Lemma 10.2 und damit ist B endlich erzeugt als A-Modul und (Korollar 9.3) damit ist B ganz über A.

Beweis von Proposition 10.1. Seien $\gamma \in C$ und $b_i \in B$, so daß $\gamma^n + b_1 \gamma^{n-1} + \cdots + b_n = 0$ Setze $B' := A[b_1, \ldots, b_n]$. Da die b_i ganz über A sind, ist B' endlich erzeugt als A-Modul (Lemma 10.3). Nun ist γ bereits ganz über B' (Wahl der b_i), also ist $B'[\gamma]$ endlich erzeugt als B'-Modul, also (Lemma 10.2) ist $B'[\gamma]$ endlich erzeugt als A-Modul. Damit ist γ ganz über A.

Korollar 10.4

Sei $R \subseteq S$ Ringerweiterung. Es ist: \overline{R}^S ist ganz abgeschlossen in S.

 $\begin{array}{l} \textit{Beweis.} \ \text{Es ist:} \ R \subseteq \overline{R}^S \subseteq S. \ \text{Sei} \ \gamma \in S \ \text{ganz} \ \text{\"{u}ber} \ \overline{R}^S, \ \text{also haben wir} \ R \subseteq _{\overline{\text{ganz}}} \overline{R}^S \subseteq _{\overline{\text{ganz}}} \overline{R}^S[\gamma] \\ \text{und damit gilt nach Proposition 10.1} \ R \subseteq _{\overline{\text{ganz}}} \overline{R}^S[\gamma]. \ \text{Somit ist} \ \gamma \in \overline{R}^S. \end{array} \qquad \square$

Korollar 10.5

Sei $R \subseteq K$, K Körper. Dann ist \overline{R}^K ganz abgeschlossen.

Beweis. $\overline{R}^K \subseteq \operatorname{Quot}(\overline{R}^K) \subseteq K$ und \overline{R}^K ist ganz abgeschlossen in K (Korollar 10.4), also ist a fortiori \overline{R}^K ganz abgeschlossen (in der Zwischenerweiterung $\operatorname{Quot}(\overline{R}^K)$).

§Zusammenfassung: Lokalisierung

- (3. Vorlesung BIII)
 - 1. Sei R ein Integritätsbereich. $D \subseteq R$ ist multiplikativ falls $1 \in D$ und $s, t \in D \Rightarrow st \in D$
 - 2. Sei $D \subseteq R$ multiplikativ mit $0 \notin D$, \sim wird auf $R \times D$ wie folgt definiert: $(r,d) \sim (r',d') \Leftrightarrow rd' = dr'$. Schreibe $\frac{r}{d} := [(r,d)]$
 - 3. $\left\{\frac{r}{d} \mid (r,d) \in R \times D\right\} := D^{-1}R$ ist ein Ring

Beispiel 10.1

 $D := R \setminus \{0\}$ ist multiplikativ und $D^{-1}R = \text{Quot}(R)$.

Beispiel 10.2

 $\mathfrak{p} \triangleleft R$ Primideal $\Rightarrow D := R \backslash \mathfrak{p}$ ist multiplikativ. Wir bezeichnen mit $R_{\mathfrak{p}}$ die <u>Lokalisierung</u> $D^{-1}R$ von R nach \mathfrak{p} , also ist $R_{\mathfrak{p}} := \{ \frac{r}{d} \mid r \in R, d \notin \mathfrak{p} \}.$

Definition und Notation

a) Für $I \triangleleft R$ und $D \subseteq R$ multiplikativ mit $0 \notin D$, setze $I^e := D^{-1}RI$ das von I in $D^{-1}R$ erzeugte Ideal.

$$\ddot{\mathbf{U}}\mathbf{A} \colon I^e = \left\{ \frac{a}{d} \mid a \in I, d \in D \right\} \lhd D^{-1}R$$

- b) Sei nun $I \triangleleft D^{-1}R$. Setze $I^c := I \cap R \triangleleft R$. Es gilt
 - (i) $I \triangleleft D^{-1}R \Rightarrow I^{ce} = I$
 - (ii) $I \triangleleft R$ prim und $I \cap D = \emptyset \Rightarrow I^{ec} = I$
 - (iii) $\mathfrak{p} \mapsto \mathfrak{p}^e$ ist eine inklusionserhaltende Bijektion zwischen $\{\mathfrak{p} \in \operatorname{Spec}(R) : p \cap D = \emptyset\}$ und $\operatorname{Spec}(D^{-1}R)$, wobei $\operatorname{Spec}(R) := Menge$ aller Primideale von R.

Korollar 10.1

Sei $\mathfrak{p} \triangleleft R$ prim. Die Abbildung $\mathfrak{q} \mapsto \mathfrak{q}R_{\mathfrak{p}}$ liefert eine inklusionserhaltende Bijektion $\{\mathfrak{q} \in \operatorname{Spec}(R) \mid \mathfrak{q} \subseteq \mathfrak{p}\} \to \operatorname{Spec}(R_{\mathfrak{p}})$. Insbesondere besitzt $R_{\mathfrak{p}}$ nur ein maximales Ideal, nämlich $\mathfrak{p}R_{\mathfrak{p}}$.

Definition 10.1

R ist lokal, wenn R nur ein maximales Ideal besitzt.

Lemma 10.2

R ist lokal $\Leftrightarrow R \backslash R^{\times}$ ist ein Ideal.

Beweis. siehe ÜB.

\S Lokalisierung und Ganzheit

<u>ÜB B4:</u> R noethersch, $D \subseteq R$ multiplikativ ohne Null $\Rightarrow D^{-1}R$ noethersch.

Satz

R ganz abgeschlossen $\Rightarrow D^{-1}R$ ganz abgeschlossen.

Beweis. siehe ÜB. \Box

Korollar

 $R \subseteq R'$ ganze Erweiterung $\Rightarrow D^{-1}R \subseteq D^{-1}R'$ ganze Erweiterung.

Beweis. Siehe ÜB. \Box

11