Algebraische Zahlentheorie Algebra B 4 - Sommersemester 2017 Prof'in Dr. Salma Kuhlmann

24. Vorlesung

24 Juli 2017

§Die Einheitsgruppe \mathcal{O}_L^{\times}

Ansatz wie in den 22. und 23. Vorlesungen.

Satz 24.1 (Dirichletsche Einheitssatz)

 \mathcal{O}_L^{\times} ist eine endlich erzeugte abelsche Gruppe mit freiem Rang s+t-1.

Beweis. Später. \Box

Bemerkung

Aus D.E.S können wir folgern, daß

- (i) $\mathcal{O}_L^{\times} = F \times (\mathcal{O}_L^{\times})_{\text{tor}}$, F freie abelsche Gruppe vom Rang s+t-1 (siehe Satz 5.4)
- (ii) $\mu(L) := (\mathcal{O}_L^{\times})_{tor} = \{x \neq 0, x \in \mathcal{O}_L, \exists \mu \in \mathbb{N}, x^{\mu} = 1\}$ besteht aus Einheitswurzeln in \mathcal{O}_L^{\times} , d.h. $\mu(L) :=$ die Gruppe der Einheitswurzeln in L.
- (iii) \mathcal{O}_L^{\times} ist endlich erzeugt \Rightarrow $(\mathcal{O}_L^{\times})_{\text{tor}}$ ist endlich erzeugt, also ist $(\mathcal{O}_L^{\times})_{\text{tor}}$ eine endliche Gruppe. Andererseits ist eine endliche Untergruppe von L^{\times} zyklisch (siehe B3), insbesondere ist $(\mathcal{O}_L^{\times})_{\text{tor}}$ eine endliche zyklische Gruppe mit Erzeuger eine Einheitswurzel $\mu \in L^{\times}$.

Für den Beweis von D.E.S brauchen wir zwei Schlüßelergebnisse:

Lemma 24.2

Sei $\alpha \in L$. Dann ist $\alpha \in \mathcal{O}_L^{\times} \Leftrightarrow \alpha \in \mathcal{O}_L$ und $N_{L/\mathbb{Q}}(\alpha) = \pm 1$.

Beweis. $,\Rightarrow$ "

$$\alpha \in \mathcal{O}_{L}^{\times} \Rightarrow \beta = \alpha^{-1} \in \mathcal{O}_{L}$$

$$\Rightarrow N_{L/\mathbb{Q}}(\alpha\beta) = \underbrace{N_{L/\mathbb{Q}}(\alpha)}_{\in \mathbb{Z}} \underbrace{N_{L/\mathbb{Q}}(\beta)}_{\in \mathbb{Z}} = 1$$

$$\Rightarrow N_{L/\mathbb{Q}}(\alpha) = \pm 1$$

" \Leftarrow " Es ist: $\prod_{i=1}^n \sigma_i(\alpha) = \alpha \prod_{i=2}^n \sigma_i(\alpha) = \pm 1$ also $\alpha^{-1} = \pm \prod_{i=2}^n \sigma_i(\alpha)$, also ist α^{-1} ganz über \mathbb{Z} , außerdem ist $\alpha^{-1} \in L$. Also $\alpha^{-1} \in \mathcal{O}_L$

Proposition 24.3

Seien $m, M \in \mathbb{N}$ fest. Es ist: Die Menge der komplexen algebraischen Zahlen $A_{m,M} = \{\alpha \in \mathcal{O}_{\mathbb{C}} \mid \text{deg MinPol}_{\mathbb{Z}}(\alpha) \leq m \text{ und } |\alpha'| \leq M \text{ für alle konjugierte } \alpha' \text{ zu } \alpha\}$ ist endlich.

Beweis. α ist ganz über \mathbb{Z} . Es genügt zu zeigen: es gibt nur endlich viele normierte irreduzible Polynome in $\mathbb{Z}[X]$, die als MinPol $\mathbb{Z}(\alpha)$ fungieren können (für solche $\alpha \in A_{m,M}$). Nun ist deg MinPol $\mathbb{Z}(\alpha) \leq m$. Wir behaupten: die Koeffiziente sind auch beschränkt, d.h $\exists M_m \in \mathbb{N}$, so daß alle Koeffiziente im Absolutbetrag $< M_m$ sind. In der Tat sind die Koeffiziente elementare symmetrische Funktionen in den Nullstellen, und die Nullstellen sind im Absolutbetrag $\leq M$ per Annahme. Genauer erklärt, sei z.B. MinPol $\mathbb{Z}(\alpha) = x^m + z_{m-1}x^{m-1} + \cdots + z_0, z_i \in \mathbb{Z}$ mit Nullstellen $\alpha_1, \ldots, \alpha_m$. Es ist

$$z_{m-1} = -\sum_{i=1}^{m} \alpha_i \Rightarrow |z_{m-1}| \le \sum_{i=1}^{m} |\alpha_i| \le mM = \binom{m}{1} M$$
$$z_{m-2} = \sum_{i < j} \alpha_i \alpha_j \Rightarrow |z_{m-2}| \le \sum_{i < j} |\alpha_i \alpha_j| \le \binom{m}{2} M^2$$

:

$$z_{m-k} = (-1)^k \sum \alpha_{i_1} \dots \alpha_{i_k} \Rightarrow |z_{m-k}| \leq \sum |\alpha_{i_1} \dots \alpha_{i_k}| \leq {m \choose k} M^k$$

Da \mathbb{Z}^m ein Gitter ist, und jedes normierte irreduzible Polynom in $\mathbb{Z}[x]$ vom deg $\leq m$ ein Vektor in \mathbb{Z}^m ist (Vektor der Koeffiziente), ist der Durchschnitt mit der beschränkten Menge endlich wie behauptet.

Korollar 24.4

Sei $\alpha \in \mathbb{C}$ eine ganze algebraische Zahl, so daß $|\alpha'| = 1$ für alle α' zu α konjugiert (d.h. für alle Nullstellen α' von MinPol $_{\mathbb{Z}}(\alpha)$). Dann gibt es $\mu \in \mathbb{N}$, so daß $\alpha^{\mu} = 1$ (d.h.: α ist eine Einheitswurzel).

Beweis. Sei $m := \deg \operatorname{MinPol}_{\mathbb{Q}}(\alpha)$. Bemerke, daß $\{1, \alpha, \alpha^2, \dots\} \subseteq A_{m,1}$, also ist es endlich, d.h. es gibt l, k mit $\alpha^l = \alpha^k$ oder $\alpha^{l-k} = 1$.

Wir können nun direkt zeigen, daß:

Korollar 24.5

 $\mu(L) = (\mathcal{O}_L^{\times})_{\text{tor}}$ ist endlich. (Vergleiche mit Bemerkung (iii))

Beweis. Setze
$$n = \deg L/\mathbb{Q}, N = 1, \mu(L) \subseteq A_{n,1}$$

Ansatz weiterhin wie in der 22. und 23. Vorlesung. Für den Beweis von D.E.S brauchen wir außerdem noch eine "Hilfsabbildung" $\lambda: L^{\times} \to \mathbb{R}^{s+t}$

$$\alpha \mapsto (\log |\sigma_1(\alpha)|, \ldots \log |\sigma_s(\alpha)|, \log |\sigma_{s+1}(\alpha)|, \log |\sigma_{s+2}(\alpha)|, \ldots, \log |\sigma_{s+t}(\alpha)|)$$

 λ ist ein Homomorphismus (der multiplikativen Gruppe L^{\times} auf die additive Gruppe $\mathbb{R}^{s} \times \mathbb{R}^{t}$). Bemerke, daß

$$\alpha \in \mathcal{O}_L^{\times} \Rightarrow |N_{L/\mathbb{Q}}(\alpha)| = 1$$

$$\Rightarrow \prod_{i=1}^s |\sigma_i(\alpha)| \prod_{j=1}^t |\sigma_{s+j}(\alpha)|^2 = 1$$

$$\Rightarrow \sum_{i=1}^s \log|\sigma_i(\alpha)| + 2\sum_{j=1}^t \log|\sigma_{s+j}(\alpha)| = 0$$
(*)

und umgekehrt auch: für $\alpha \in \mathcal{O}_L$, $(*) \Rightarrow N_{L/\mathbb{Q}}(\alpha) = \pm 1$ also $\alpha \in \mathcal{O}_L^{\times}$, d.h.: $\forall \alpha \in \mathcal{O}_L$, $\alpha \in \mathcal{O}_L^{\times} \Leftrightarrow (*)$ gilt für α .

Betrachte die Untermenge von $\mathbb{R}^s \times \mathbb{R}^t$: $H := \{x \in \mathbb{R}^s \times \mathbb{R}^t \mid \sum_{i=1}^s x_i + 2 \sum_{j=1}^t x_{s+j} = 0\}$. Eigentlich ist H ein Unterraum der Dimension s+t-1 (Lösungsraum von einem homogenen Gleichungssystem mit einer Gleichung und in s+t Unbekannten). Mit dieser Notation gilt: $\mathcal{O}_L^{\times} = \{\alpha \in \mathcal{O}_L \mid \lambda(\alpha) \in H\}$.

Proposition 24.6

 $\lambda(\mathcal{O}_L^{\times})$ ist ein Gitter in \mathbb{R}^{s+t}

Beweis. Später \Box

Korollar 24.7

 \mathcal{O}_L^{\times} ist endlich erzeugt mit freiem Rang $\leq s+t-1$

Beweis. $\lambda(\mathcal{O}_L^{\times})$ ist ein Gitter $\subseteq H$, also ist $\lambda(\mathcal{O}_L^{\times})$ eine freie abelsche Gruppe vom Rang $\leq s + t - 1$. Betrachte: $\lambda_{|\mathcal{O}_L^{\times}|} : \mathcal{O}_L^{\times} \to H$ und berechne dessen Kern:

$$\alpha \in \ker \lambda \Leftrightarrow \log |\sigma_l(\alpha)| = 0 \quad \forall l = 1, \dots, s + t$$

 $\Leftrightarrow |\sigma_l(\alpha)| = 1 \quad \forall l = 1, \dots, s + t$
 $\Leftrightarrow |\alpha'| = 1 \text{ für alle konjugierte } \alpha' \text{ zu } \alpha$
 $\Leftrightarrow \alpha \text{ ist Einheitswurzel} \Leftrightarrow \alpha \in \mu(L)$

Wir haben gezeigt: ker $\lambda = \mu(L)$ ist eine endliche Gruppe. Zusammenfassend:

Ferner ist $\mu(L) = (\mathcal{O}_L^{\times})_{\mathrm{tor}}$ und der freie Rang von \mathcal{O}_L^{\times} ist dann $\dim_{\mathbb{Z}}(\mathcal{O}_L^{\times}/(\mathcal{O}_L^{\times})_{\mathrm{tor}}) = \dim_{\mathbb{Z}} \lambda(\mathcal{O}_L^{\times}) \leq s + t - 1$.

Bemerkung

Um D.E.S vollständig zu zeigen, müssen wir nur noch beweisen, daß $\lambda(\mathcal{O}_L^{\times})$ ein vollständiges Gitter in H ist.

Beweis von Proposition 24.6. z.z.: $\lambda(\mathcal{O}_L^{\times})$ ist diskret. Dafür genügt es zu zeigen, dass: $\forall c \in \mathbb{R}_+$ existieren endlich viele $\alpha \in \mathcal{O}_L^{\times}$ mit $|\log |\sigma_l(\alpha)|| \leq c \quad \forall l = 1, \ldots, s+t$. Aber $\log |\sigma_l(\alpha)| \leq c \Leftrightarrow |\sigma_l(\alpha)| \leq \exp c$. Also $\alpha \in \mathcal{O}_L^{\times}$ mit $|\log |\sigma_l(\alpha)|| \leq c \Rightarrow \alpha \in \underbrace{A_{n,\lceil \exp c \rceil}}_{\text{endlich wegen Prop.24.3}}$

25