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Convention: When a new definition is given, the German name appears
between brackets.

1. Orderings

Definition 1.1. (partielle Anordnung) Let Γ be a non-empty set and let 6
be a relation on Γ such that:

(i) γ 6 γ ∀ γ ∈ Γ,

(ii) γ1 6 γ2, γ2 6 γ1 ⇒ γ1 = γ2 ∀ γ1, γ2 ∈ Γ,

(iii) γ1 6 γ2, γ2 6 γ3 ⇒ γ1 6 γ3 ∀ γ1, γ2, γ3 ∈ Γ.

Then 6 is a partial order on Γ and (Γ,6) is said to be a partially ordered
set.

Example 1.2. Let X be a non-empty set. For every A,B ⊆ X, the relation

A 6 B ⇐⇒ A ⊆ B,

is a partial order on the power set P(X) = {A : A ⊆ X}.

Definition 1.3. (totale Anordung) A partial order 6 on a set Γ is said to
be total if

∀ γ1, γ2 ∈ Γ γ1 6 γ2 or γ2 6 γ1.

Notation 1.4. If (Γ,6) is a partially ordered set and γ1, γ2 ∈ Γ, then we
write:

γ1 < γ2 ⇔ γ1 6 γ2 and γ1 6= γ2,
γ1 > γ2 ⇔ γ2 6 γ1,
γ1 > γ2 ⇔ γ2 6 γ1 and γ1 6= γ2.

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 1
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Examples 1.5. Let Γ = R× R = {(a, b) : a, b ∈ R}.

(1) For every (a1, b1), (a2, b2) ∈ R× R we can define

(a1, b1) 6 (a2, b2) ⇐⇒ a1 6 a2 and b1 6 b2.

Then (R× R,6) is a partially ordered set.

(2) For every (a1, b1), (a2, b2) ∈ R× R we can define

(a1, b1) 6l (a2, b2) ⇐⇒ [ a1 < a2] or [ a1 = a2 and b1 6 b2].

Then (R × R,6l) is a totally ordered set. (Remark: the "l" stands
for "lexicographic").

2. Ordered fields

Definition 2.1. (angeordneter Körper) Let K be a field. Let 6 be a total
order on K such that:

(i) x 6 y ⇒ x+ z 6 y + z ∀x, y, z ∈ K,

(ii) 0 6 x, 0 6 y ⇒ 0 6 xy ∀x, y ∈ K.

Then the pair (K,6) is said to be an ordered field.

Examples 2.2. The field of the rational numbers (Q,6) and the field of the
real numbers (R,6) are ordered fields, where 6 denotes the usual order.

Definition 2.3. (formal reell Körper) A field K is said to be (formal) real
if there is an order 6 on K such that (K,6) is an ordered field.

Proposition 2.4. Let (K,6) be an ordered field. The following hold:

• a 6 b ⇔ 0 6 b− a ∀ a, b ∈ K

• 0 6 a2 ∀ a ∈ K

• a 6 b, 0 6 c ⇒ ac 6 bc ∀ a, b, c ∈ K

• 0 < a 6 b ⇒ 0 < 1/b 6 1/a ∀ a, b ∈ K

• 0 < n ∀n ∈ N

Remark 2.5. If K is a real field then char(K) = 0 and K contains a copy
of Q.

Notation 2.6. Let (K,6) be an ordered field and let a ∈ K.

sign(a) :=


1 if a > 0,
0 if a = 0,
−1 if a < 0.

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 2
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|a| := sign(a)a.

Fact 2.7. Let (K,6) be an ordered field and let a, b ∈ K. Then

(i) sign(ab) = sign(a) sign(b),

(ii) | ab | = | a || b |,

(iii) | a+ b | 6 | a |+ | b |.

3. Archimedean fields

Definition 3.1. (archimedischer Körper) Let (K,6) be a field. We say that
K is Archimedean if

∀ a ∈ K ∃n ∈ N such that a < n.

Definition 3.2. Let (Γ 6) be an ordered set and let ∆ ⊆ Γ. Then

• ∆ is cofinal (kofinal) in Γ if

∀ γ ∈ Γ ∃ δ ∈ ∆ such that γ 6 δ.

• ∆ is coinitial (koinitial) in Γ if

∀ γ ∈ Γ ∃ δ ∈ ∆ such that δ 6 γ.

• ∆ is coterminal (koterminal) in Γ if ∆ is cofinal and coinitial in Γ.

Example 3.3. Let (K 6) be an Archimedean field. Then N is cofinal in K,
−N is coinitial in K and Z = −N ∪ N is coterminal in K.

Remark 3.4.
- If (K,6) is an Archimedean field and Q ⊆ K is a subfield, then

(Q,6) is an Archimedean field.

- (R,6) is an Archimedean field and therefore also (Q,6) is.

Remark 3.5. Let (K,6) be an ordered field. Then K is Archimedean if
and only if ∀ a, b ∈ K∗ ∃n ∈ N such that

|a| 6 n| b | and | b | 6 n|a|.

Example 3.6. Let R[x] be the ring of the polynomials with coefficients in
R. We denote by ff(R[x]) the field of the rational functions of R[x], i.e.

ff(R[x]) = R(x) :=

{
f(x)

g(x)
: f(x), g(x) ∈ R[x] and g(x) 6= 0

}
.
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Let f(x) = anxn+an−1xn−1+· · ·+a1x+a0 ∈ R[x] and let k ∈ N the smallest
index such that ak 6= 0 (and therefore actually f(x) = anxn + · · · + akxk).
We define

f(x) > 0 ⇔ ak > 0

and then for every f(x), g(x) ∈ R[x] with g(x) 6= 0 we define

f(x)

g(x)
> 0 ⇔ f(x)g(x) > 0.

This is a total order on K = ff(R[x]) which makes (K,6) an ordered field.
We claim that (K,6) contains

(i) an infinite positive element, i.e.

∃A ∈ K such that A > n ∀n ∈ N,

(ii) an infinitesimal positive element, i.e.

∃ a ∈ K such that 0 < a < 1/n ∀n ∈ N.

For instance the element x ∈ K is infinitesimal and the element 1/x ∈ K is
infinite. Therefore (K,6) is not Archimedean.

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 4
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1. The field R(x)

Let us consider again the field R(x) of the rational functions on R[x]:

Example 1.1. Let f(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 ∈ R[x] and let
k ∈ N the smallest index such that ak 6= 0 (and therefore actually f(x) =
anxn + · · ·+ akxk). We define

f(x) > 0 ⇔ ak > 0

and then for every f(x), g(x) ∈ R[x] with g(x) 6= 0 we define

f(x)
g(x)

> 0 ⇔ f(x)g(x) > 0.

This is a total order on

R(x) =
{
f(x)
g(x)

: f(x), g(x) ∈ R[x] and g(x) 6= 0
}

which makes (R(x),6) an ordered field.

Remark 1.2. By the definition above

f(x) = x− r < 0 ∀ r ∈ R, r > 0.

Therefore the element x ∈ R(x) is such that

0 < x < r ∀ r ∈ R, r > 0.

We can see that there is no other ordering on R(x) which satisfies the above
property:

1
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Proposition 1.3. Let 6 be the ordering on R(x) defined in 1.1. Then 6 is
the unique ordering on R(x) such that

0 < x < r ∀ r ∈ R, r > 0.

Proof. Assume that 6 is an ordering on R(x) such that

0 < x < r ∀ r ∈ R, r > 0.

Then (see Proposition 2.4 of last lecture)

0 < xm < r ∀m > 1, m ∈ N, ∀ r > 0, r ∈ R.

Let f(x) = anxn + an−1xn−1 + · · · + akxk ∈ R[x] with k ∈ N the smallest
index such that ak 6= 0. We want to prove that sign(f) = sign(ak).

Let g(x) = anxn−k + · · ·+ ak+1x + ak. Then f(x) = xkg(x).
If k = 0, then f(x) = g(x). Otherwise f(x) 6= g(x), and since sign(f) =

sign(xk) sign(g) and sign(xk) = 1, it follows that sign(f) = sign(g). We want
sign(g) = sign(ak).

If g(x) = ak we are done. Otherwise let h(x) = anxn−k−1 + · · ·+ ak+2x +
ak+1. Then g(x) = ak +xh(x) and h(x) 6= 0. Since |xm| < 1 for every m ∈ N,
we get

|h(x)| 6 |an|+ · · ·+ |ak+1| := c > 0, c ∈ R.

Then

|xh(x)| 6 c|x| < |ak|,

otherwise |x| > |ak|
c , contradiction.

Therefore sign(g) = sign(ak + xh) = sign(ak), as required (Note that one
needs to verify that |a| > |b| ⇒ sign(a+ b) = sign(a)).

�

We now want to classify all orderings on R(x) which make it into an
ordered field. For this we need the notion of Dedekind cuts.

2. Dedekind cuts

Notation 2.1. Let (Γ,6) be a totally ordered set and let L,U ⊆ Γ. If we
write

L < U

we mean that
x < y ∀x ∈ L, ∀ y ∈ U.

(Similarly for L 6 U)

Definition 2.2. (Dedekindschnitt) Let (Γ,6) be a totally ordered set. A
Dedekind cut of (Γ,6) is a pair (L,U) such that L,U ⊆ Γ, L∪U = Γ and
L < U .

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 6
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Remark 2.3. Since L < U it follows that L∩U = ∅. Therefore the subsets
L,U form a partition of Γ (The letter "L" stands for "lower cut" and the
letter "U" for "upper cut").

Example 2.4. Let (Γ,6) be a totally ordered set. For every γ ∈ Γ we can
consider the following two Dedekind cuts:

γ− := (]−∞, γ[, [γ,∞[)

γ+ := (]−∞, γ], ]γ,∞[)

Moreover if we take L,U ∈ {∅,Γ}, then we have two more cuts:

−∞ := (∅,Γ), +∞ := (Γ,∅)

Example 2.5. Consider the Dedekind cut (L,U) of (Q,6) given by

L = {x ∈ Q : x <
√

2} and U = {x ∈ R : x >
√

2}.

Then there is no γ ∈ Q such that (L,U) = γ− or (L,U) = γ+.

Definition 2.6. (trivialen und freie Schnitte) Let (L,U) be a Dedekind cut
of a totally ordered set (Γ,6). If (L,U) = ±∞ or there is some γ ∈ Γ such
that (L,U) = γ+ or (L,U) = γ− (as defined in 2.4), then (L,U) is said to
be a trivial (or realized) Dedekind cut. Otherwise it is said to be a free
Dedekind cut (or gap).

Remark 2.7. A Dedekind cut (L,U) of a totally ordered set (Γ,6) is free
if L 6= ∅, U 6= ∅, L has no maximum element and U has no least element.

Definition 2.8. (Dedekindvollständing) A totally ordered set (Γ,6) is said
to be Dedekind complete if for every pair (L,U) of subsets of Γ with
L 6= ∅, U 6= ∅ and L 6 U , there exists γ ∈ Γ such that

L 6 γ 6 U.

Exercise 2.9. Show that a totally ordered set (Γ,6) is Dedekind complete
if and only if (Γ,6) has no free Dedekind cut.

Examples 2.10.
- The ordered set of the reals (R,6) is Dedekind complete, i.e. the set
of Dedekind cuts of (R,6) is {a± : a ∈ R} ∪ {−∞,+∞}.

- We have already seen in 2.5 that (Q,6) is not Dedekind complete.
We can generalize 2.5: for every α ∈ R − Q we have the gap given
by ( ]−∞, α[ ∩ Q, ]α,∞ [ ∩ Q).

3. The orderings on R(x)

Theorem 3.1. There is a canonical bijection between the set of the orderings
on R(x) and the set of the Dedekind cuts of R.

Proof. Let 6 be an ordering on R(x). Consider the sets L = {v ∈ R : v < x}
and U = {w ∈ R : x < w}. Then C6

x := (L,U) is a Dedekind cut of R. (Note
that if 6 is the order defined in 1.1 then C6

x = 0+). So we can define a map

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 7



4 SALMA KUHLMANN

{6 :6 is an ordering on R(x)} f−→ {(L,U) : (L,U) is a Dedekind cut of R}
6 7→ C6

x

We now want to find a map

{(L,U) : (L,U) is a Dedekind cut of R} −→ {6 :6 is an ordering on R(x)}

which is the inverse of f . Every Dedekind cut of (R,6) is of the form −∞,
a−, a+, +∞, with a ∈ R. With a change of variable, respectively, y := −1/x,
y := a− x, y := x− a, y := 1/x, we obtain an ordering on R(y) such that

0 < y < r ∀ r ∈ R, r > 0.

We have seen in 1.3 that there is only one ordering with such a property, so
we have a well-defined map from the set of the Dedekind cuts of (R,6) into
the set of orderings of R(x). It is precisely the inverse of f .

�

4. Order preserving embeddings

Definition 4.1. (ordungstreue Einbettung) Let (K,6) and (F,6) be ordered
fields. An injective homomorphism of fields

ϕ : K ↪→ F

is said to be an order preserving embedding if

a 6 b ⇒ ϕ(a) 6 ϕ(b) ∀ a, b ∈ K.

Theorem 4.2 (Hölder). Let (K,6) be an Archimedean ordered field. Then
there is an order preserving embedding

ϕ : K ↪→ R.
Proof. Let a ∈ K. Consider the sets

Ia := ]−∞, a]K ∩ Q and Fa := [a,∞[K ∩ Q.

Then Ia 6 Fa and Ia ∪ Fa = Q. So we can define

ϕ(a) := sup Ia = inf Fa ∈ R.

Since K is Archimedean, ϕ is well-defined. Note that

Ia + Ib = {x+ y : x ∈ Ia, y ∈ Ib} ⊆ Ia+b

and
Fa + Fb ⊆ Fa+b,

then ϕ(a) + ϕ(b) 6 ϕ(a + b) and ϕ(a) + ϕ(b) > ϕ(a + b). This proves that
ϕ is additive. Similarly one gets ϕ(ab) = ϕ(a)ϕ(b).

�
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1. Preorderings and positive cones

Definition 1.1. (Präordnung) Let K be a field and let T ⊆ K such that

(i) T + T ⊆ T ,
(ii) TT ⊆ T ,
(iii) a2 ∈ T for every a ∈ K.

(where T + T := {t1 + t2 : t1, t2 ∈ T} and TT := {t1t2 : t1, t2 ∈ T}).
Then T is said to be a preordering (or cone) of K.

Definition 1.2. (echte Präordnung) A preordering T of a field K is said to
be proper if −1 /∈ T .

Definition 1.3. (Positivkegel) A proper preordering T of a field K is said
to be a positive cone if −T ∪ T = K, where −T := {−t : t ∈ T}.

Proposition 1.4. Let (K,6) be an ordered field. Then the set

P := {x ∈ K : x > 0}

is a positive cone of K. Conversely, if P is a positive cone of a field K, then
∀x, y ∈ K

x 6 y ⇔ y − x ∈ P

defines an ordering on K such that (K,6) is an ordered field.
Therefore for every field K there is a bijection between the set of the or-

derings on K and the set of the positive cones of K.

Notation 1.5. Let K be a field. We denote by
∑

K2 the set

{a21 + · · ·+ a2n : n ∈ N, ai ∈ K, i = 1, . . . , n}.

1
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Exercise 1.6. Let K be a field. Then

(1)
∑

K2 is a preordering of K.

(2)
∑

K2 is the smallest preordering of K, i.e. if T is a preordering of
K, then

∑
K2 ⊆ T .

(3) If K is real then −1 /∈
∑

K2 (i.e.
∑

K2 is a proper preordering).

(4) If K is algebraically closed then it is not real.

(5) Let (K,P ) be an ordered real field, F a field and

ϕ : F −→ K

an homomorphism of fields. Then Q := ϕ−1(P ) is an ordering of F
(Q is said to be the pullback of P ).

(6) If P , Q are positive cones of K with P ⊆ Q, then P = Q.

(7) In particular, if
∑

K2 is a positive cone (or ordering: see 1.4) of K,
then it is the unique ordering of K.

Remark 1.7. Let K be a field with char(K) 6= 2. If T ⊆ K is a preordering
which is not proper (i.e. −1 ∈ T ), then T = K.

Proof. For every x ∈ K,

x =

(
x+ 1

2

)2

+ (−1)
(
x− 1

2

)2

∈ T.

�

Remark 1.8. Let T = {Ti : i ∈ I} be a family of preorderings of a field K.
Then

(i) ⋂
i∈I

Ti

is a preordering of K.

(ii) if ∀ i, j ∈ I ∃k ∈ I such that Ti ∪ Tj ⊆ Tk, then⋃
i∈I

Ti

is a preordering of K.

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 10
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2. A crucial Lemma

Lemma 2.1. Let K be a field and T a proper preordering of K. If a ∈ K
and a /∈ T , then

T − aT = {t1 − at2 : t1, t2 ∈ T}

is a proper preordering of K.

Proof. Since K2 ⊆ T , also K2 ⊆ T − aT . Clearly (T − aT ) + (T − aT ) ⊆
T − aT . Moreover ∀ t1, t2, t3, t4 ∈ T ,

(t1 − at2)(t3 − at4) = t1t3 + a2t2t4 − a(t1t4 + t2t3) ∈ T − aT,

therefore (T − aT )(T − aT ) ⊆ (T − aT ) and T − aT is a preordering of K.
If (T − aT ) is not proper, then −1 = t1 − at2 for some t1, t2 ∈ T with

t2 6= 0, since T is proper. Therefore

a =
1

t22
(1 + t1)t2 ∈ T,

contradiction. �

3. Several consequences

Corollary 3.1. Every maximal proper preordering of a field K is an ordering
(positive cone: see 1.4) of K.

Corollary 3.2. Every proper preordering of a field K is contained in an
ordering of K.

Proof. Let T be a proper preordering. Let

T = {T ′ : T ′ ⊇ T, T ′ is a proper preordering of K }.

T is non-empty and for every ascending chain of T

Ti1 ⊆ Ti2 ⊆ . . . ⊆ Tik ⊆ . . .

by 1.8(ii)
⋃
Tij is a proper preordering containing T and Zorn’s Lemma

applies.
Let P be a maximal element of T . Then P is a maximal preordering of

K containing T , and by 3.1 P is an ordering.
�

Corollary 3.3. Let T be a proper preordering of a field K. Then

T =
⋂
{P : T ⊆ P, P positive cone of K}.

(⊆) It is obvious.

(⊇) Let a ∈ K such that a is contained in every positive cone containing
T . If a /∈ T , then by Lemma 2.1 T − aT is a proper preordering of
K. By Corollary 3.2, T − aT is contained in a positive cone P of K.
Then −a ∈ P and a /∈ P .
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Corollary 3.4. (Characterization of real fields) Let K be a field. The fol-
lowing are equivalent:

(1) K is real (i.e. K has an ordering).

(2) K has a proper preordering.

(3)
∑

K2 is a proper preordering (i.e. −1 /∈
∑

K2).

(4) ∀n ∈ N, ∀ a1, . . . , an ∈ K

n∑
i=1

a2i = 0 ⇒ a1 = · · · = an = 0.

Proof. (1) ⇒ (2) ⇒ (3) obvious. We show now (3) ⇔ (4).

(⇒) Let
∑n

i=1 a
2
i = 0 and suppose ai 6= 0 for some 1 6 i 6 n. Say an 6= 0.

Then
a21 + · · ·+ a2n

a2n
= 0,

and (
a1
an

)2

+ · · ·+
(
an−1
an

)2

+ 1 = 0.

Therefore −1 ∈
∑

K2, contradiction.

(⇐) Suppose −1 ∈
∑

K2, so

−1 = b21 + · · ·+ b2s,

for some s ∈ N and b1, . . . , bs ∈ K. Then

1 + b21 + · · ·+ b2s = 0

and 1 = 0, contradiction.
To complete the proof note that if −1 /∈

∑
K2 then

∑
K2 is a proper

preordering, and by Corollary 3.2 K has an ordering. This proves (3) ⇒ (1).
�

Corollary 3.5. (Artin) Let K be a real field. Then∑
K2 =

⋂
{P : P is an ordering of K}.

In other words, if K is a real field and a ∈ K, then

a >P 0 for every ordering P ⇔ a ∈
∑

K2.
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1. Ordering extensions

Definition 1.1. Let L/K be a field extension and P an ordering on K.
An ordering Q of L is said to be an extension (Fortsetzung) of P if P ⊂ Q

(equivalently Q ∩K = P ).

Definition 1.2. Let L/K be a field extension and P an ordering on K. We
define

TL(P ) := {
n∑
i=1

piy
2
i : n ∈ N, pi ∈ P, yi ∈ L }.

Remark 1.3. Let L/K be a field extension and P an ordering on K.
Then TL(P ) is the smallest preordering of L containing P .

Corollary 1.4. Let L/K be a field extension and P an ordering on K.
Then P has an extension to an ordering Q of L if and only if TL(P ) is a

proper preordering (i.e. if and only if −1 /∈ TL(P )).

2. Quadratic extensions

Theorem 2.1. Let K be a field, a ∈ K and define L := K(
√
a). Then an

ordering P of K extends to an ordering Q of L if and only if a ∈ P .

Proof.
(⇒) Assume Q is an extension of P , then a = (

√
a)2 ∈ Q ∩K = P .

(⇐) Let a ∈ P (without loss of generality we can assume L 6= K and√
a /∈ K). We show that TL(P ) is a proper preordering (and then

the thesis follows by Corollary 1.4).
If not, there is n ∈ N and there are x1, . . . , xn, y1, . . . , yn ∈ K,

p1, . . . , pn ∈ P such that
1
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−1 =
n∑
i=1

pi(xi + yi
√
a)2

=
n∑
i=1

pi(x
2
i + ay2i + 2xiyi

√
a).

On the other hand −1 ∈ K, and since every x ∈ K(
√
a) can be

written in a unique way as x = k1+ k2
√
a with k1, k2 ∈ K, it follows

that

−1 =

n∑
i=1

pi(x
2
i + ay2i ) ∈ P,

contradiction.
�

3. Odd degree field extensions

Theorem 3.1. Let L/K be a field extension such that [L : K] is finite and
odd. Then every ordering of K extends to an ordering of L.

Proof. Otherwise, let n ∈ N the minimal odd degree of a field extension for
which the theorem fails.

Let L/K be a finite field extension such that [L : K] = n and let P be an
ordering of K not extending to an ordering of L.

Since char(K) = 0 Primitive Element Theorem applies and there is some
α ∈ L \ K such that

L = K(α) ∼= K[x]/(f),

where f is the minimal polynomial of α over K. Therefore deg(f) = n,
f(α) = 0 and for every g(x) ∈ K[x] such that deg(g) < n, we have g(α) 6= 0.

By Corollary 1.4, −1 ∈ TL(P ), so

1 +

s∑
i=1

piy
2
i = 0,

where ∀ i = 1, . . . , s pi ∈ P , pi 6= 0, yi ∈ L, yi 6= 0. Define

yi = gi(α),

where ∀ i = 1, . . . , s 0 6= gi(x) ∈ K[x] and deg(g) < n. Since

1 +

s∑
i=1

pigi(α)
2 = 0,

it follows that

1 +

s∑
i=1

pigi(x)2 = f(x)h(x), h(x) ∈ K[x].
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Define d := max{deg(gi) : i = 1, . . . , s}. Then d < n and the polynomial
f(x)h(x) has degree 2d. The coefficient of x2d is of the form

r∑
1=1

pib
2
i ,

with pi ∈ P and bi ∈ K, bi 6= 0, so

r∑
1=1

pib
2
i >P 0.

Note that deg(h) = 2d− n < n (because d < n) and 2d− n is odd.
Let h1(x) be an irreducible factor of h(x) of odd degree and suppose β is

a root of h1(x). Then

deg(h1) = [K(β) : K] < [L : K] = n.

Since h1(β) = 0, also

f(β)h(β) = 1 +

s∑
i=1

pigi(β)
2 = 0.

Therefore
∑s

i=1 pigi(β)
2 = −1 ∈ TK(β)(P ) and by Corollary 1.4 P does not

extend to an ordering of K(β). This is in contradiction with the minimality
of n. �

4. Real closed fields

Definition 4.1. (reell abgeschloßer Körper) A field K is said to be real
closed if

(1) K is real,
(2) K has no proper real algebraic extension.

Proposition 4.2. (Artin-Schreier, 1926) Let K be a field. The following
are equivalent:

(i) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic

extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K2 ∪ −(K2).

Proof. (i) ⇒ (ii). Trivial.

(ii) ⇒ (iii). Let P be an ordering which does not extend to any proper
algebraic extension. By Theorem 3.1, it follows that K has no proper alge-
braic extension of odd degree.

Let b ∈ P . Then b = a2 for some a ∈ K, otherwise by Theorem 2.1 P
extends to an ordering of K(

√
b), which is a proper algebraic extension of

K.
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Since K = P ∪ (−P ) and P = {a2 : a ∈ K}, we get (iii).

(iii) ⇒ (i). Note char(K) = 0 and
√
−1 /∈ K since K is real.

Then K(
√
−1) is the only proper quadratic extension of K: if b ∈ K but√

b /∈ K (i.e. b is not a square), then b = −a2 for some a 6= 0, a ∈ K, and
K(
√
b) = K(

√
−1
√
a2) = K(

√
−1).

Claim. Every proper algebraic extension of K contains a proper qua-
dratic subextension.

Note that if Claim is established we are done: indeed it follows that no
proper extension can be real since −1 is a square in it.

Let L/K a proper algebraic extension. Without loss of generality assume
that [L : K] is finite and so even. By Primitive Element Theorem we can
further assume that L′ is a Galois extension.

Let G = Gal(L/K), |G| = [L : K] = 2am, a > 1, m odd. Let S be
a 2-Sylow subgroup of G (i.e. |S| = 2a) and let E := Fix(S). By Galois
correspondence we get:

[E : K] = [G : S] = m odd.

Therefore by assumption (iii) we must have [E : K] = [G : S] = 1, so G = S
is a 2-group (|G| = 2a) and it has a subgroup G1 of index 2. By Galois
correspondence, defining F1 := Fix(G1) we get a quadratic subextension of
L/K. �
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1. Real closed fields

We first recall Artin-Schreier characterization of real closed fields:

Proposition 1.1. (Artin-Schreier, 1926) Let K be a field. The following
are equivalent:

(i) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic

extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K2 ∪ −(K2).

Corollary 1.2. If K is a real closed field then

K2 = {a2 : a ∈ K}

is the unique ordering of K.

Proof. Since K is a real closed field, by (ii) it has an ordering P which does
not extend to any proper algebraic extension.

Let b ∈ P . Then b = a2 for some a ∈ K, otherwise P extends to an
ordering of K(

√
b), which is a proper algebraic extension of K.

Therefore P = K2. �

Remark 1.3. We denote by
∑
K2 the unique ordering of a real closed field

K, even though we know that
∑
K2 = K2, to avoid any confusion with the

cartesian product K ×K.

Corollary 1.4. Let (K,6) be an ordered field. Then K is real closed if and
only if

(a) every positive element in K has a square root in K, and
(b) every polynomial of odd degree has a root in K.

Examples 1.5. R is real closed and Q is not.

1
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2. The algebraic closure of a real closed field

Lemma 2.1. (Hilfslemma) If K is a field such that K2 is an ordering of K,
then every element of K(

√
−1) is a square.

Proof. Let x = a+
√
−1 b ∈ K(

√
−1) := L, a, b ∈ K, b 6= 0. We can suppose

b > 0. We want to find y ∈ L such that x = y2.

K2 is an ordering ⇒ a2 + b2 ∈ K2. Let c ∈ K, c > 0 such that

a2 + b2 = c2.

Since a2 6 a2 + b2 = c2, |a| 6 c, so c+ a > 0, c− a > 0 (−c 6 a 6 c).
Therefore 1

2(c± a) ∈ K2. Let d, e ∈ K, d, e > 0 such that

1

2
(c+ a) = d2

1

2
(c− a) = e2.

So

d =

√
c+ a√

2
e =

√
c− a√

2

Now set y := d+ e
√
−1. Then

y2 = (d+ e
√
−1)2

= d2 + (e
√
−1)2 + 2de

√
−1

=
1

2
(c+ a)− 1

2
(c− a) + 2

1

2

√
(c− a)(c+ a)

√
−1

=
1

2
a+

1

2
a+

√
c2 − a2

√
−1

= a+
√
b2
√
−1

= a+ b
√
−1

= x.

�

Theorem 2.2. (Fundamental Theorem of Algebra) If K is a real closed field
then K(

√
−1) is algebraically closed.

Proof. Let L ⊇ K(
√
−1) be an algebraic extension of K(

√
−1). We show

L = K(
√
−1).

Set G := Gal(L/K). Then [L : K] = |G| = 2am, a > 1, m odd.
Let S < G be a 2-Sylow subgroup (|S| = 2a), and F := Fix(S). We have

[F : K] = [G : S] = m odd.

Since K is real closed, it follows that m = 1, so G = S and |G| = 2a. Now

[L : K(
√
−1)][K(

√
−1) : K] = [L : K] = 2a.

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 18



REAL ALGEBRAIC GEOMETRY LECTURE NOTES (05: 03/11/09) 3

Therefore [L : K(
√
−1)] = 2a−1. We claim that a = 1.

If not, set G1 := Gal(L/K(
√
−1)), let S1 be a subgroup of G1 of index 2,

and F1 := Fix(S1). So

[F1 : K(
√
−1)] = [G1 : S1] = 2,

and F1 is a quadratic extension of K(
√
−1). But every element of K(

√
−1)

is a square by Lemma 2.1, contradiction. �

Notation. We denote by K̄ the algebraic closure of a field K, i.e. the
smallest algebraically closed field containing K.

We have just proved that if K is real closed then K̄ = K(
√
−1).

3. Factorization in R[x]

Corollary 3.1. (Irreducible elements in R[x] and prime factorizaction in
R[x]). Let R be a real closed field, f(x) ∈ R[x]. Then

(1) if f(x) is monic and irreducible then

f(x) = x− a or f(x) = (x− a)2 + b2, b 6= 0;

(2)

f(x) = d
n∏

i=1

(x− ai)
m∏
j=1

(x− dj)2 + b2j , bj 6= 0.

Proof. Let f(x) ∈ R[x] be monic and irreducible. Then deg(f) 6 2.
Suppose not, and let α ∈ R̄ a root of f(x). Then

[R(α) : R] = deg(f) > 2.

On the other hand, by 2.2

[R(α) : R] 6 [R̄ : R] = 2,

contradiction.

If deg(f) = 1, then f(x) = x− a, for some a ∈ R.

If deg(f) = 2, then f(x) = x2 − 2ax + c = (x − a)2 + (c − a2), for some
a, c ∈ R.

We claim that c− a2 > 0. If not,

c− a2 6 0 ⇒ −(c− a2) > 0 ⇒ a2 − c > 0,

the discriminant 4(a2 − c) > 0, f(x) has a root in R and factors, contra-
diction.

Therefore (c− a2) ∈ R2 and there is b ∈ R such that (c− a2) = b2 6= 0.
�
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Corollary 3.2. (Zwischenwertsatz : Intermediate value Theorem) Let R be
a real closed field, f(x) ∈ R[x]. Assume a < b ∈ R with f(a) < 0 < f(b).
Then ∃ c ∈ R, a < c < b such that f(c) = 0.

Proof. By previous Corollary,

f(x) = d

n∏
i=1

(x− ai)
m∏
j=1

(x− dj)2 + b2j

= d

n∏
i=1

li(x)q(x),

where li(x) := x− ai, ∀ i = 1, . . . , n and q(x) :=
∏m

j=1(x− dj)2 + b2j .

We claim that there is some k ∈ {1, . . . , n} such that lk(a)lk(b) < 0. Since

sign(f) = sign(d)

n∏
i=1

sign(li) sign(q) and sign(q) = 1,

if we had that

sign(li(a)) = sign(li(b)) ∀ i ∈ {1, . . . , n},

we would have
sign(f(a)) = sign(f(b)),

in contradiction with f(a)f(b) < 0.

For such a k,
lk(a) < 0 < lk(b),

i.e.
a− ak < 0 < b− ak,

and c := ak ∈ ]a, b[ is a root of f(x). �

Corollary 3.3. (Rolle) Let R be a real closed field, f(x) ∈ R[x], Assume
that a, b ∈ R, a < b and f(a) = f(b) = 0. Then ∃ c ∈ R, a < c < b such that
f ′(c) = 0.
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Let R be a real closed field (for all this lecture).

1. Counting roots in an interval

Definition 1.1. Let f(x) ∈ R[x], a ∈ R,

f(x) = (x− a)mh(x)

with m ∈ N, m > 1 and h(a) 6= 0 (i.e. (x− a) is not a factor of h(x)).
We say that m is the multiplicity (Vielfachheit) of f at a.

Corollary 1.2. (Generalized Intermediate Value Theorem: Verstärkung Zwis-
chenwertsatz). Let f(x) ∈ R[x]; a, b ∈ R, a < b, f(a)f(b) < 0 (i.e.
f(a) < 0 < f(b) or f(b) < 0 < f(a)). Then the number of roots of f(x)
counting multiplicities in the interval ]a, b[ ⊆ R is odd (in particular, f has
a root in ]a, b[).

Proof. By Corollary 3.1 of 5th lecture (3/11/09), we can write

f(x) =
n∏

i=1

(x− ci)
mig(x)

with g(x) = dq(x), where d ∈ R is the leading coefficient of f(x) and q(x) is
the product of the irreducible quadratic factors of f(x).

Note that g(x) has constant sign on R (i.e. g(r) > 0 ∀ r ∈ R or g(r) <
0 ∀ r ∈ R). Without loss of generality, we can suppose d = 1 (and so g(x) is
positive everywhere).

Set ∀ i = 1, . . . , n {
Li(x) := (x− ci)

mi

li(x) := x− ci.

If li(x) changes sign in ]a, b[ we must have li(a) < 0 < li(b). Note that Li(x)
changes sign in ]a, b[ if and only if li(x) does and mi is odd.

In particular if Li(x) changes sign we must have Li(a) < 0 < Li(b) as well.
1
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Let us count the number of distinct i ∈ {1, . . . , n} for which Li(a) < 0 <
Li(b). We claim that this number must be odd. If not, we get an even
number of i such that Li(a)Li(b) < 0, so their product would be positive, in
contradiction with the fact that f(a)f(b) < 0.

Set

|{i ∈ {1, . . . , n} : Li(a) < 0 < Li(b)}| = M > 1 odd.

Say these are L1, . . . , LM . So the total number of roots of f in ]a, b[ counting
multiplicity is ∑

:= m1 + · · ·+mM .

Since mi is odd ∀ i = 1, . . . ,M and M is odd, it follows that
∑

is odd as
well.

�

2. Bounding the roots

Corollary 2.1. Let f(x) ∈ R[x], f(x) = dxm + dm−1xm−1 + · · ·+ d0. Set

D := 1 +

0∑
i=m−1

∣∣∣∣did
∣∣∣∣ ∈ R.

Then
(i) a ∈ R, f(a) = 0 ⇒ |a| < D;

(i.e. f has no root in ]−∞,−D] ∪ [D +∞[ )

(ii) y ∈ [D,+∞[ ⇒ sign(f(y)) = sign(d);

(iii) y ∈ ]−∞,−D[ ⇒ sign(f(y)) = (−1)m sign(d).

Proof.
(i) For every i = 0, . . . ,m− 1 set bi := di

d and compute for |y| > D:

f(y) = dym(1 + bm−1y
−1 + · · ·+ b0y

−m).

Now

|bm−1y−1 + · · ·+ b0y
−m| 6 (|bm−1|+ · · ·+ |b0|)D−1 < 1.

(ii) If y > D then f(y) = d
∏
(y − ai)

miq(y) where deg(q) is even and
y − ai > 0.

(iii) If y 6 −D then (y − ai)
mi < 0 if and only if mi is odd. Moreover m

is odd if and only if
∑

mi is odd.
�

Corollary 2.2. (Rolle’s Satz) Let f(x) ∈ R[x], a < b ∈ R such that f(a) =
f(b). Then there is c ∈ R, a < c < b such that f ′(c) = 0.
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Proof. We can suppose f(a) = f(b) = 0 (otherwise if f(a) = f(b) = k 6= 0,
we can consider the polynomial (f − k)(x)).

We can also assume that f(x) has no root in ]a, b[. So

f(x) = (x− a)m(x− b)ng(x),

where g(x) has no root in [a, b], and by Corollary 1.2 (IVT) g(x) has constant
sign in [a, b]. Compute

f ′(x) = (x− a)m−1(x− b)n−1g1(x),

where

g1(x) := m(x− b)g(x) + n(x− a)g(x) + (x− a)(x− b)g′(x).

Therefore

g1(a) = m(a− b)g(a)

g1(b) = n(b− a)g(b).

Since g1(a)g1(b) < 0, by the Intermediate Value Theorem (1.2) g1(x) has
a root in ]a, b[ and so does f ′(x). �

Corollary 2.3. (Mittelwertsatz: Mean Value Theorem) Let f(x) ∈ R[x],
a < b ∈ R. Then there is c ∈ R, a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. We can apply Rolle’s Satz to

F (x) := f(x)− (x− a)
f(b)− f(a)

b− a
,

since F (a) = F (b). �

Corollary 2.4. (Monotonicity Theorem). Let f(x) ∈ R[x], a < b ∈ R. If
f ′ is positive (respectively negative) on ]a, b[, then f is strictly increasing
(respectively strictly decreasing) on [a, b].

Proof. If a 6 a1 < b1 6 b, by the Mean Value Theorem there is some c ∈ R,
a1 < c < b1 such that

f ′(c) =
f(b1)− f(a1)

b1 − a1
.

�

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 23



4 SALMA KUHLMANN

3. Changes of sign

Definition 3.1.
(i) Let (c1, . . . , cn) a finite sequence in R. An index i ∈ {1, . . . , n} is a

change of sign (Vorzeichenwechsel) if cici+1 < 0.

(ii) Let (c1, . . . , cn) a finite sequence in R. After we have removed all
zero’s by the sequence, we define

Var(c1, . . . , cn) : = |{i ∈ {1, . . . , n} : i is a change of sign}|
= |{i ∈ {1, . . . , n} : cici+1 < 0}|.

Theorem 3.2. (Lemma von Descartes) Let f(x) = anxn + · · ·+ a0 ∈ R[x],
an 6= 0. Then

|{a ∈ R : a > 0 and f(a) = 0}| 6 Var(an, . . . , a1, a0).

Proof. By induction on n = deg(f). The case n = 1 is obvious, so suppose
n > 1.

Let r be the smallest index such that ar 6= 0. By induction applied to

f ′(x) = nanxn−1 + · · ·+ rarxr−1,

we know that there are Var(nan, . . . , rar) = Var(an, . . . , ar) many positive
roots of f ′. Set c := the smallest such positive root of f ′ (by convention
c := +∞ if none exists)

Apply Rolle’s Theorem: f has at most 1 +Var(an, . . . , ar) positive roots.

Case 1. If the number of positive roots of f is strictly less than 1 +
Var(an, . . . , ar), then the number of positive roots of f is 6 Var(an, . . . , ar) 6
Var(an, . . . , ar, a0) and we are done.

Case 2. Assume f has exactly 1 + Var(an, . . . , ar) positive roots. We
claim that in this case

1 + Var(an, . . . , ar) = Var(an, . . . , ar, a0).

We observe that f has a root a in ]0, c[.
For 0 < x 6 c we have that sign(f ′(x)) = sign(ar) 6= 0, so f is strictly

monotone in the interval [0, c] (Monotonicity Theorem). So

ar > 0 ⇒ a0 = f(0) < f(a) = 0 ⇒ a0 < 0,

ar < 0 ⇒ a0 = f(0) > f(a) = 0 ⇒ a0 > 0.

In both cases a0ar < 0 and the claim is established. �

Corollary 3.3. Let f(x) ∈ R[x] a polynomial with m monomials. Then f
has at most 2m− 1 roots in R.

Proof. Consider f(x) and f(−x). By previous Theorem they have both at
most m−1 strictly positive roots in R. So f(x) has at most 2m−2 non-zero
roots and therefore at most 2m− 1 roots in R. �
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Let R be a real closed field.

1. Sturm’s Theorem

Definition 1.1.
(i) Let f ∈ R[x] be a non-constant polynomial, deg(f) > 1. The Sturm

sequence of f is defined recursevely as a sequence (f0, . . . , fr) of
polynomials in R[x] such that:

f0 := f, f1 := f ′ and

f0 = f1q1 − f2

f1 = f2q2 − f3

. . .

fi−1 = fiqi − fi+1

. . .

fr−2 = fr−1qr−1 − fr

fr−1 = frqr,

where fi, qi ∈ R[x], fi 6= 0 and deg(fi) < deg(fi−1).

(ii) Let x ∈ R. Set

Vf (x) := Var(f0(x), . . . , fr(x)).

We recall that after we have removed all zero’s by the sequence
(c1, . . . , cn), we defined Var(c1, . . . , cn) as the number of changes of
sign in (c1, . . . , cn), i.e.

Var(c1, . . . , cn) = |{i ∈ {1, . . . , n} : cici+1 < 0}|.

Theorem 1.2. (Sturm 1829). Let a, b ∈ R, a < b, f(a)f(b) 6= 0. Then

|{c : a 6 c 6 b , f(c) = 0}| = Vf (a)− Vf (b).
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Proof. For the proof we study the function Vf (x), x ∈ R, locally constant
except around finitely many roots for f0, . . . , fr.

(1) Suppose gcd(f0, f1) = 1.

(2) Hilfslemma ⇒ ∃ δ such that

|x− c| < δ ⇒ sign(f0(x)f1(x)) = sign(x− c) =


−1 if x < c

0 if x = c

1 if x > c.

(3) ∀ i ∈ {1, . . . , r − 1}: gcd(fi−1, fi) = 1 and

fi−1 = qifi − fi+1, with fi+1 6= 0.

So if fi(c) = 0 then

fi−1(c)fi+1(c) < 0.

(4) Let fi(c) = 0 for i ∈ {0, . . . , r−1}. Then fi+1(c) 6= 0 (so sign(fi+1(c)) = ±1).

We shall now compare for fi(c) = 0, i ∈ {0, . . . , r − 1}

sign(fi(x)) sign(fi+1(x))

for |x− c| < δ and count.

We first examine the case i = 0.

Observe that sign(f1(x)) 6= 0 ∀x such that |x− c| < δ because of
Hilfslemma. So in particular sign(f1(x)) is constant for |x − c| < δ
and it is equal to sign(f1(c):

x→ c− x = c x→ c+
f0(x) − sign(f1(c)) 0 sign(f1(c))
f1(x) sign(f1(c)) sign(f1(c)) sign(f1(c))

contribution to Vf (x) 1 0 0

Now consider i ∈ {1, . . . , r − 1} and use (2), i.e.

fi(d) = 0 =⇒ fi−1(d)fi+1(d) < 0 :

x→ d− x = d x→ d+

fi−1(x) − sign(fi+1(d)) − sign(fi+1(d)) − sign(fi+1(d))
fi(x) 0
fi+1(x) sign(fi+1(d)) sign(fi+1(d)) sign(fi+1(d))

contribution to Vf (x) 1 1 1

Therefore for a < b, Vf (a)−Vf (b) is the number of roots of f in ]a, b[.

Let us consider now the general case. Set

gi := fi/fr i = 0, . . . , r.
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The sequence of polynomials (g0, . . . , gr) satisfies the previous con-
ditions (1)− (4). We can conclude by noticing that:
(i) Var(g0(x), . . . , gr(x)) = Var(f0(x), . . . , fr(x)) (because fi(x) =

fr(x)gi(x)),

(ii) f = f0 and g0 = f/fr have the same zeros (fr = gcd(f, f ′),
so g = f/fr has only simple roots, whereas f has roots with
multiplicities.)

�

For i = 0, . . . , r set di := deg(fi) and ϕi := the leading coefficient of fi.
Set

Vf (−∞) :=Var((−1)d0ϕ0, (−1)d1ϕ1, . . . , (−1)drϕr)

Vf (+∞) :=Var(ϕ0, ϕ1, . . . , ϕr).

Then we have:

Corollary 1.3. The number of distinct roots of f is Vf (−∞)− Vf (+∞).
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1. Real closure

Definition 1.1. Let (K,P ) be an ordered field. R is a real closure of (K,P )
if

(1) R is real closed,
(2) R ⊇ K, R |K is algebraic,
(3) P =

∑
R2 ∩K (i.e. the order on K is the restriction of the unique

order R to K).

Theorem 1.2. Every ordered field (K,P ) has a real closure.

Proof. Apply Zorn’s Lemma to

L := {(L,Q) : L |K algebraic, Q ∩K = P}.

�

Proposition 1.3. (Corollary to Sturm’s Theorem) Let K be a field. Let R1,
R2 be two real closed fields such that

K ⊆ R1 and K ⊆ R2

with

P := K ∩
∑

R2
1 = K ∩

∑
R2

2

(i.e. R1 and R2 induce the same ordering P on K).
Let f(x) ∈ K[x]; then the number of roots of f(x) in R1 is equal to the

number of roots of f(x) in R2.
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2. Order preserving extensions

Proposition 2.1. Let (K,P ) be an ordered field. Let R be a real closed field
containing (K,P ). Let K ⊆ L ⊆ R be such that [L : K] < ∞. Let S be a
real closed field with

ϕ : (K,P ) ↪→ (S,
∑

S2)

an order preserving embedding. Then ϕ extends to an order preserving em-
bedding

ψ : (L,
∑

R2 ∩ L) ↪→ (S,
∑

S2).

Proof. We recall that if (K,P ) and (L,Q) are ordered fields, a field homo-
morphism ϕ : K −→ L is called order preserving with respect to P and Q
if ϕ(P ) ⊆ Q (equivalently P = ϕ−1(Q)).

By the Theorem of the Primitive Element L = K(α).
Consider f = MinPol(α |K). Since α ∈ R, ϕ(f) has at least one root β

in S,

L := K(α)
ψ←→ ϕ(K)(β),

so there is at least one extension of ϕ from K to L.
Let ψ1, . . . , ψr all such extensions of ϕ to L = K(α), and for a con-

tradiction assume that none of them is order preserving with respect to
Q = L ∩

∑
R2. Then ∃ b1, . . . , br ∈ L, bi > 0 (in R) and ψi(bi) < 0 (in S)

∀ i = 1, . . . , r.
Consider L′ := L(

√
b1, . . . ,

√
br) ⊂ R. Since [L : K] <∞, also [L′,K] < ∞.

So let τ be an extension of ϕ from K to L′. In particular τ|L is one of the
ψi’s. Say τ|L = ψ1.

Now compute for b1 ∈ L,

ψ1(b1) = τ(b1) = τ((
√
b1)

2) = (τ(
√
b1))

2 ∈
∑

S2,

in contradiction with the fact that ψ1(b1) < 0.
�

Theorem 2.2. Let (K,P ) be an ordered field and (R,
∑
R2) be a real closure

of (K,P ). Let (S,
∑
S2) be a real closed field and assume that

ϕ : (K,P ) ↪→ (S,
∑

S2)

is an order preserving embeding. Then ϕ has a uniquely determined extension

ψ : (R,
∑

R2) ↪→ (S,
∑

S2).

Proof. Consider

L := {(L,ψ) : K ⊂ L ⊂ R; ψ : L ↪→ S, ψ|K = ϕ}.

Let (L,ψ) be a maximal element. Then by Proposition 2.1 we must have
L = R.
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Therefore we have an order preserving embedding ψ of R extending ϕ

ψ : R ↪→ S.

We want to prove that ψ is unique. We show that ψ(α) ∈ S is uniquely
determined for every α ∈ R.

Let f = PolMin(α |K) and let α1 < · · · < αr all the real roots of f in R.
Let β1 < · · · < βr be all the real roots of f in S. Since ψ : R ↪→ S is order
preserving, we must have ψ(αi) = βi for every i = 1, . . . , r. In particular
α = αj for some 1 6 j 6 r and ψ(α) = βj ∈ S. �

Corollary 2.3. Let (K,P ) be an ordered field, R1, R2 two real closures of
(K,P ). Then exists a unique

ϕ : R1 −→ R2

K-isomorphism (i.e. with ϕ|K = id).

Corollary 2.4. Let R be a real closure of (K,P ). Then the onlyK-automorphism
of R is the identity.

Corollary 2.5. Let R be a real closed field, K ⊆ R a subfield. Set P :=
K ∩

∑
R2 the induced order. Then

Kralg = {α ∈ R : α is algebraic over K}

is relatively algebraic closed in R and is a real closure of (K,P ).

Proof. It is enough to show that Kralg is real closed.
Kralg is real because Q := Kralg ∩

∑
R2 is an induced ordering.

Let a ∈ Q, a = b2, b ∈ R. So p(x) = x2 − a ∈ Kralg[x] has a root in R.
One can see that b is algebraic over K (so b ∈ Kralg).
Similarly one shows that every odd polynomial with coefficients in Kralg

has a root in Kralg. �

Corollary 2.6. Let (K,P ) be an ordered field, S a real closed field and
ϕ : (K,P ) ↪→ S an order preserving embedding. Let L |K an algebraic ex-
tension. Then there is a bijective correspondence

{extensions ψ : L→ S of ϕ} −→ {extensions Q of P to L}

ψ 7→ ψ−1(
∑

S2)

Proof.
(⇒) Let ψ : L ↪→ S an extension of ϕ. Then indeed Q := ψ−1(

∑
S2) is

an ordering on L. Furthermore ψ−1(
∑
S2) ∩K = ϕ−1(

∑
S2) = P .

So the extension ψ induces the extension Q.
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(⇐) Conversely assume that Q is an extension of P fromK to L (Q∩K =
P ). Note that if R is a real closure of (L,Q) then R is a real closure
of (K,P ) as well.

Now apply Theorem 2.2 to extend ϕ to σ : R → S. Set ψ := σ|L
which is order preserving with respect to Q. So the map is well-
defined and surjective. To see that it is also injective, assume

ψ1 : L −→ S, ψ2 : L −→ S, ψ1|K
= ψ2|K

= ϕ

which induce the same order

Q = ψ−11 (
∑

S2) = ψ−12 (
∑

S2)

on L. Let R be the real closure of (L,Q). Apply Theorem 2.2 to ψ1

and ψ2 to get uniquely determined extensions

σ1 : R −→ S, σ2 : R −→ S,

of ψ1 and ψ2 respectively.
But now σ1|K = σ2|K = ϕ. By the uniqueness part of Theorem

2.2 we get σ1 = σ2 and a fortiori ψ1 = ψ2.
�

Corollary 2.7. Let (K,P ) be an ordered field, R a real closure, [L : K] <∞.
Let L = K(α), f =MinPol(α |K). Then there is a bijection

{roots of f in R} −→ {extensions Q of P to L}.

Proof. If β is a root we consider the K-embedding

ϕα : L ↪→ R

such that ϕα(α) = β. Set Q := ϕ−1(
∑
R2) ordering on L extending P . �

Example 2.8. K = Q(
√
2) has 2 orderings P1 6= P2, with

√
2 ∈ P1,

√
2 /∈

P2. The Minimum Polynomial of
√
2 over Q is p(x) = x2 − 2.
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1. Basic version of Tarski-Seidenberg

Basic version: Let (R,6) be a real closed field. We are interested in a
system of equations and inequalities (Gleichungen und Ungleichungen) for
X = (X1, . . . , Xn) of the form

S(X) :=


f1(X)�1 0
...

fk(X)�k 0

where ∀ i = 1, . . . , k �i ∈ {>, >,=, 6=} and fi(X) ∈ Q[X] or fi(X) ∈ R[X].
We say that S(X) is a system of polynomial equalities and inequalities with
coefficients in Q (or with coefficients in R) in n variables.

Theorem 1.1. (Tarski-Seidenberg Theorem: Basic Version) Let S(T ;X) be
a system with coefficients in Q in m+n variables, with T = (T1, . . . , Tm) and
X = (X1, . . . , Xn). Then there exist S1(T ), . . . , Sl(T ) systems in m variables
and coefficients in Q such that:

for every real closed field R and every t = (t1, . . . , tm) ∈ Rm the sys-
tem S(t;X) of polynomial equalities and inequalities in n variables and co-
efficients in R obtained by substituting Ti with ti in S(T ,X) for every i =
1, . . . ,m, has a solution x = (x1, . . . , xn) ∈ Rn if and only if t = (t1, . . . , tm) ∈
Rm is a solution in R for one of the systems S1(T ), . . . , Sl(T ).

Example 1.2. Let m = 3 and n = 1, so T = (T1, T2, T3) and X = X, and

S(T ,X) :=
{
T1X

2 + T2X + T3 = 0

1
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Let R be a real closed field and (t1, t2, t3) ∈ R3. Then S(t;X) has a solution
X in R if and only if

(t1 6= 0 ∧ t22 − 4t1t3 > 0) ∨ (t1 = 0 ∧ t2 6= 0) ∨ (t1 = t2 = t3 = 0)
| | |

S1(T1, T2, T3) S2(T1, T2, T3) S3(T1, T2, T3)

Concise version:

∀T [ (∃X : S(T ;X)) ⇔ (

l∨
i=1

Si(T )) ].

Remark 1.3. The proof is by induction on n.
The case n = 1 is the heart of the proof and we will show it later.
For now, let us just convince ourselves that the induction step is straight-

forward.

Assume n > 1, so

S(T ;X1, . . . , Xn) = S(T ,X1, . . . , Xn−1;Xn).

By case n = 1 we have finitely many systems S1(T ,X1, . . . , Xn−1), . . . , Sl(T ,X1, . . . , Xn−1)
such that

for any real closed field R and any (t1, . . . , tm, x1, . . . , xn−1) ∈ Rm+n−1 we
have

∃Xn : S(t1, . . . , tm, x1, . . . , xn−1;Xn) ←→
l∨

i=1

Si(t1, . . . , tm, x1, . . . , xn−1).

By induction hypothesis on n:

for every fixed i, 1 6 i 6 l, ∃ systems Sij(T ), j = 1, . . . , li such that: for
each real closed field R and each t ∈ Rm the system

Si(t;X1, . . . , Xn−1)

has a solution (x1, . . . , xn−1) ∈ Rn−1 if and only if t is a solution for one of
the systems Sij(T ); j = 1, . . . , li.

Therefore for any real closed field R and any t ∈ Rm

S(t;X1, . . . , Xn) has a solution x ∈ Rn if and only if

t is a solution to one of the systems
{
Sij(T ); i = 1, . . . , l, j = 1, . . . , li

2. Tarski Transfer Principle I

Theorem 2.1. Let S(T ,X) be a system with coefficients in Q in m + n
variables. Let (K,6) be an ordered field. Let R1, R2 be two real closed
extensions of (K,6). Then for every t ∈ Km, the system S(t,X) has a
solution x ∈ Rn

1 if and only if it has a solution x ∈ Rn
2 .
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Proof. Let t ∈ Km ⊆ Rm
1 ∩Rm

2 . Then there are systems Si(T ) (i = 1, . . . , l)
with coefficients in Q and variables T1, . . . , Tm such that

∃x ∈ R1 : S(t, x) ←→ t satisfies
l∨

i=1

Si(T ) ←→ ∃x ∈ R2 : S(t, x).

�

3. Tarski Transfer Principle II

Theorem 3.1. Let (K,6) be an ordered field, R1, R2 two real closed exten-
sions of (K,6). Then a system of polynomial equations and inequalities of
the form

S(X) :=


f1(X)�1 0
...

fk(X)�k 0

where ∀ i = 1, . . . , k �i ∈ {>, >,=, 6=} and fi(X) ∈ K[X1, . . . , Xn],

has a solution x ∈ Rn
1 ⇐⇒ it has a solution x ∈ Rn

2 .

Proof. Let t1, . . . , tm be the coefficients of the polynomials f1, . . . , fk, listed
in some fixed order. Replacing the coefficients t1, . . . , tm by variables T1, . . . , Tm
yields a system σ(T ,X) in m+ n variables with coefficients in Q (in fact in
Z) for which

σ(t1, . . . , tm, X) = S(X).

Now we can apply Tarski Transfer I. �

4. Tarski Transfer Principle III

Theorem 4.1. Suppose that R ⊆ R1 are real closed fields. Then a system
of polynomial equations and inequalities with coefficients in R

S(X) :=


f1(X)�1 0
...

fk(X)�k 0

where ∀ i = 1, . . . , k �i ∈ {>, >,=, 6=} and fi(X) ∈ R[X1, . . . , Xn]

has a solution x ∈ Rn
1 ⇐⇒ it has a solution x ∈ Rn.

Proof. Apply Tarski Transfer II with K = R2 = R. �
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5. Tarski Transfer Principle IV

Theorem 5.1. Let R be a real closed field and (F,6) an ordered field ex-
tension of R. Then a system of polynomial equations and inequalities of the
form

S(X) :=


f1(X)�1 0
...

fk(X)�k 0

where ∀ i = 1, . . . , k �i ∈ {>, >,=, 6=} and fi(X) ∈ R[X1, . . . , Xn]

has a solution x ∈ Fn ⇐⇒ it has a solution x ∈ Rn.

Proof. Let R1 be the real closure of the ordered field (F,6) and apply Tarski
Transfer III. �

6. Lang’s Homomorphism Theorem

Corollary 6.1. Suppose R and R1 are real closed fields, R ⊆ R1. Then a
system of polynomial equations of the form

S(X) :=


f1(X) = 0

... fi(x) ∈ R[X1, . . . , Xn]

fk(X) = 0

has a solution x ∈ Rn
1 if and only if it has a solution x ∈ Rn.

Proof. Apply Tarski Transfer III. �

The previous Corollary is equivalent to the following:

Theorem 6.2. (Homomorphism Theorem I). Let R and R1 be real closed
fields, R ⊆ R1. For any ideal I ⊆ R[X], if there exists an R-algebra homo-
morphism

ϕ : R[X]/I −→ R1

then there exists an R-algebra homomorphism

ψ : R[X]/I −→ R.

Proof. By Hilbert’s Basis Theorem, I is finitely generated, say I = 〈f1, . . . , fk〉,
with f1, . . . , fk ∈ R[X]. Consider the system

S(X) :=


f1(X) = 0
...

fk(X) = 0

Claim. There is a bijection

{x ∈ Rn
1 solution to S(X)} ←→ {ϕ : R[X]/I → R1 R-algebra homomorphism}
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Proof of the claim:

Let x ∈ Rn
1 be a solution to S(X); then the evaluation homomorphism

ϕ : R[X]/I −→ R1

f + I 7→ f(x)

is well-defined and is an R-algebra homomorphism.

Conversely: assume that

ϕ : R[X]/I −→ R1

is anR-algebra homomorphism. Then for e = (e1, . . . , en) and f =
∑
aeX

e =∑
ae1...enX

e1
1 . . . Xen

n ∈ R[X],

ϕ(f+I) =
∑

aeϕ(X1+I)
e1 · · ·ϕ(Xn+I)

en = f(ϕ(X1+I), . . . , ϕ(Xn+I)).

In other words set (x1, . . . , xn) ∈ Rn
1 to be defined by x1 := ϕ(X1 +

I), . . . , xn := ϕ(Xn + I), then (x1, . . . , xn) is a solution to S(X) and the
R-algebra homomorphism ϕ is indeed given by point evaluation at x =
(x1, . . . , xn) ∈ Rn

1 .

Now apply Corollary 6.1. �
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1. Homomorphism Theorems

Theorem 1.1. (Homomorphism Theorem I) Let R ⊆ R1 be real closed fields
and I ⊂ R[x] an ideal. Then

∃ R-alg. hom. ϕ :
R[x]

I
−→ R1 ⇒ ∃ R-alg. hom. ψ :

R[x]

I
−→ R.

Corollary 1.2. (Homomorphism Theorem II) Suppose R and R1 are real
closed fields, R ⊆ R1. Let A be a finetely generated R-algebra. If there is an
R-algebra homomorphism

ϕ : A −→ R1

then there is an R-algebra homomorphism

ψ : A −→ R.

Proof. We want to use Homomorphism Theorem I. For this we just prove
the following:

Claim 1.3. A is a finitely generated R-algebra if and only if there is a
surjective R-algebra homomorphism ϑ : R[x1, . . . , xn] −→ A (for some n ∈
N).

Proof.
(⇒) LetA be a finitely generatedR-algebra, say with generators r1, . . . , rn.

Define ϑ : R[x1, . . . , xn] −→ A by setting ϑ(xi) := ri for every i =
1, . . . , n, and ϑ(a) := a for every a ∈ R.

(⇐) Given a surjective homomorphism ϑ : R[x1, . . . , xn] −→ A set ri :=
ϑ(xi) ∈ A for every i = 1, . . . , n. Then {r1, . . . , rn} generate A over
R.

�

So we get A ∼= R[x]/I with I = kerϑ.
�

1
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We can see that Homomorphism Theorem II implies T-T-III:

Let R ⊂ R1 be real closed fields. S(X) with coefficients in R has a solu-
tion x ∈ Rn

1 if and only if it has a solution x ∈ Rn.

We first need the following:

Proposition 1.4. Let

S(x) :=


f1(x) �1 0
...

fk(x) �k 0

be a system with coefficients in R, where �i ∈ {>, >,=, 6=}. Then S(x) can
be written as a system of the form

σ(x) :=


g1(x) > 0

...
gs(x) > 0

g(x) 6= 0

for some g1, . . . , gs, g ∈ R[x].

Proof.
• Replace each equality in the original system by a pair of inequalities:

fi = 0 ⇔

{
fi > 0

−fi > 0

• Replace each strict inequality

fi > 0 by

{
fi > 0

fi 6= 0

• Finally collect all inequalities fi 6= 0, i = 1, . . . , t as

g :=
t∏

i=1

fi 6= 0.

�

Now we show that Homomorphism Theorem II implies T-T-III:

Proof. Let R ⊆ R1 and let S(x) be a system with coefficients in R:

S(x) :=


f1(x) �1 0
...

fk(x) �k 0

Rewrite it as
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S(x) :=


f1(x) > 0
...

fs(x) > 0

g(x) 6= 0

with fi(x), g(x) ∈ R[x1, . . . , xn].
Suppose x ∈ Rn

1 is a solution of S(x). Consider

A :=
R[X1, . . . , Xn, Y1, . . . , Yk, Z]

〈Y 2
1 − f1, . . . , Y 2

k − fk; gZ − 1〉
,

which is a finitely generated R-algebra. Consider the R-algebra homo-
morphism ϕ such that

ϕ : A −→ R1

X̄i 7→ xi

Ȳj 7→
√
fj(x)

Z̄ 7→ 1/g(x).

By Homomorphism Theorem II there is an R-algebra homomorphism
ψ : A −→ R. Then ψ(X̄1), . . . , ψ(X̄n) is the required solution in Rn.

�

2. Hilbert’s 17th problem

Definition 2.1. Let R be a real closed field. We say that a polynomial
f(x) ∈ R[x] is positive semi-definite if f(x1, . . . , xn) > 0 ∀ (x1, . . . , xn) ∈
Rn. We write f > 0.

We know that
f ∈

∑
R[x]2 ⇒ f > 0.

Now take R = R. Conversely, for any f ∈ R[x] is it true that

f > 0 on Rn ?⇒ f ∈
∑

R(x)2. (Hilbert’s 17th problem).

Remark 2.2.
(1) Hilbert knew that the answer is NO to the more natural question

f ∈ R[x], f > 0 on Rn ⇒ f ∈
∑

R[x]2 ?

(2) If n = 1 then indeed f > 0 on R ⇒ f = f21 + f22 .
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(3) More generally Hilbert showed that:

Set Pd,n := the set of homogeneous polynomials of degree d in
n-variables which are positive semi-definite

and set
∑

d,n := the subset of Pd,n consisting of sums of squares.

Then

Pd,n =
∑

d,n ⇐⇒ n 6 2 or d = 2 or (n = 3 and d = 4).

Note: only d even is interesting because

Lemma 2.3. 0 6= f ∈
∑

R[x]2 ⇒ deg(f) is even. More precisely, if
f =

∑k
i=1 f

2
i , with fi ∈ R[x] fi 6= 0, then deg(f) = 2 max{deg(fi) :

i = 1, . . . , k}.

Hilbert knew that P6,3 \
∑

6,3 6= ∅.

The first example was given by Motzkin 1967:

m(X,Y, Z) = X6 + Y 4Z2 + Y 2Z4 − 3X2Y 2Z2.

Theorem 2.4. (Artin, 1927) Let R be a real closed field and f ∈ R[x], f > 0
on Rn. Then f ∈

∑
R(x)2.

Proof. Set F = R(x) and T =
∑
F 2 =

∑
R(x)2. Note that since R(x) is

real,
∑
F 2 is a proper preordering.

We want to show:

f /∈ T ⇒ ∃x ∈ Rn : f(x) < 0.

Since f ∈ F \ T , by Zorn’s Lemma there is a preordering P ⊇ T of F
which is maximal for the property that f /∈ P . Then P is an ordering of F
(see proof of Crucial Lemma 2.1 of Lecture 3).

Let 6P be the ordering such that (F,6P ) is an ordered field extension of
the real closed field R (since R is a real closed field, it is uniquely ordered
and we know that (F,6P ) is an ordered field extension). By construction
f /∈ P so f(x) < 0. Consider the system

S(x) :
{
f(x) < 0, f(x) ∈ R[x].

This system has a solution X in F = R(x), namely

X = (X1, . . . , Xn) Xi ∈ R(x) = F.

thus by T-T-IV ∃x ∈ Rn with f(x) < 0. �
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1. Normal form of semialgebraic sets

Let R be a fixed real closed field and n > 1. We consider 3 operations on
subsets of Rn:

(1) finite unions,
(2) finite intersections,
(3) complements.

Definition 1.1.
(i) The class of semialgebraic sets in Rn is defined to be the smallest

class of subsets of Rn closed under operations (1), (2), (3), and which
contains all sets of the form

{x ∈ Rn : f(x) � 0},

where f ∈ R[x] = R[x1, . . . , xn] and � ∈ {>, >,=, 6=}.

(ii) Equivalently a subset S ⊆ Rn is semialgebraic if and only if it is a
finite boolean combination of sets of the form

{x ∈ Rn : f(x) > 0},

where f(x) ∈ R[x].

(iii) Consider

(∗) S(x) :=


f1(x) �1 0
...

fk(x) �k 0

with fi(x) ∈ R[x]; �i ∈ {>, >,=, 6=}.
The set of solutions of S(x) is precisely the semialgebraic set

1
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S :=
k⋂

i=1

{x ∈ Rn : fi(x) �i 0}.

The solution set S of a system (∗) is called a basic semialgebraic
subset of Rn.

(iv) Let f1, . . . , fk ∈ R[x] = R[x1, . . . , xn]. A set of the form

Z(f1, . . . , fk) := {x ∈ Rn : f1(x) = · · · = fk(x) = 0}

is called an algebraic set.

(v) A subset of Rn of the form

U(f) : = {x ∈ Rn : f(x) > 0},
U(f1, . . . , fk) : = {x ∈ Rn : f1(x) > 0, . . . , fk(x) > 0}

= U(f1) ∩ · · · ∩ U(fk)

is called a basic open semialgebraic set.

(vi) A subset of Rn of the form

K(f) : = {x ∈ Rn : f(x) > 0},
K(f1, . . . , fk) = K(f1) ∩ · · · ∩ K(fk)

is called a basic closed semialgebraic set.

Remark 1.2.
(a) An algebraic set is in particular a basic semialgebraic set.
(b) Z(f1, . . . , fk) = Z(f), where f =

∑k
i=1 f

2
i .

Proposition 1.3.
(1) A subset of Rn is semialgebraic if and only if it is a finite union of

basic semialgebraic sets.

(2) A subset is semialgebraic if and only if it is a finite union of basic
semialgebraic sets of the form

Z(f) ∩ U(f1, . . . , fk)

(normal form).

Proof. (1) ((2) is similar).
(⇐) Clear.
(⇒) To show that the class of semialgebraic sets is included in the class of

finite unions of basic semialgebraic sets it suffices to show that this
last class is closed under finitary boolean operations: union, inter-
section, complement.
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The closure by union is by definition.

Intersection:

(∪iCi) ∩ (∪jDj) = ∪i,j (Ci ∩Dj).

Complement: It is enough to show that the complement of

{x ∈ Rn : f(x) � 0} � ∈ {>, >,=, 6=},

is a finite union of basic semialgebraic, since

(C ∩D)c = Cc ∪Dc and (C ∪D)c = Cc ∩Dc.

Let us consider the possible cases for � ∈ {>, >,=, 6=}:
{x ∈ Rn : f(x) > 0}c = {x ∈ Rn : −f(x) > 0}
{x ∈ Rn : f(x) > 0}c = {x ∈ Rn : f(x) = 0} ∪ {x ∈ Rn : −f(x) > 0}
{x ∈ Rn : f(x) = 0}c = {x ∈ Rn : f(x) 6= 0}.

�

2. Geometric version of Tarski-Seidenberg

We shall return to a systematic study of the class of semialgebraic sets
and its property in the next lectures.

For now we want to derive an important property of this class from Tarski-
Seidenberg’s theorem:

Theorem 2.1. (Tarski-Seidenberg geometric version)
Consider the projection map

π : Rm+n = Rm ×Rn −→ Rm

( t, x ) 7→ t.

Then for any semialgebraic set A ⊆ Rm+n, π(A) is a semialgebraic set in
Rm.

Proof. Since
π(

⋃
i

Ai) =
⋃
i

π(Ai),

it sufficies to show the result for a basic semialgebraic subset A of Rm+n; i.e.
show that π(A) is semialgebraic in Rm.

Let u := (u1, . . . , uq) be the coefficients of all polynomials f1(T ,X), . . . , fk(T ,X) ∈
R[T1, . . . , Tm, X1, . . . , Xn] of the system S(T ,X) = S describing A.

So we can view S as a system of polynomial equations and inequalities
S(U, T ,X) with coefficient in Q such that A is the set of solutions in Rm+n

of the system S(u, T ,X), i.e.
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A = {(t, x) ∈ Rm+n : (t, x) is solution of S(u, T ,X)}.

By Tarski-Seidenberg’s theorem, we have systems of polynomial equalities
and inequalities with coefficients in Q, say

S1(u, T ), . . . , Sl(u, T ),

such that for any t ∈ Rm the system S(u, t,X) has a solution x = (x1, . . . , xn) ∈
Rn if and only if (u, t) is a solution for one of S1(u, T ), . . . , Sl(u, T ), i.e.

π(A) = {t ∈ Rm : ∃x ∈ Rn with (t, x) ∈ A}
= {t ∈ Rm : ∃x ∈ Rn s.t. (t, x) is a solution of S(u, T ,X)}
= {t ∈ Rm : the system S(u, t,X) has a solution x ∈ Rn}
= {t ∈ Rm : t is a solution for one of the Si(u, T ), i = 1, . . . , l}

=
⋃

i=1,...,l

{t ∈ Rm : t is a solution of Si(u, T )}.

�

We shall show many important consequences such as the image of a semi-
algebraic function is semialgebraic and the closure and the interior of a semi-
algebraic set are semialgebraic.

Definition 2.2. Let A ⊆ Rm and B ⊆ Rn. We say that f : A → B, is a
semialgebraic map if A and B are semialgebraic and

Γ(f) = {(x, y) ∈ Rm+n : x ∈ A, y ∈ B, y = f(x)}

is semialgebraic.

3. Formulas in the language of real closed fields

Definition 3.1. A first order formula in the language of real closed
fields is obtained as follows recursively:

(1) if f(x) ∈ Q[x1, . . . , xn], n > 1, then

f(x) > 0, f(x) > 0, f(x) = 0, f(x) 6= 0

are first order formulas (with free variables x = (x1, . . . , xn));

(2) if Φ and Ψ are first order formulas, then

Φ ∧Ψ, Φ ∨Ψ, ¬Φ

are also first order formulas (with free variables given by the union
of the free variables of Φ and the free variables of Ψ);
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(3) if Φ is a first order formula then

∃xΦ and ∀xΦ

are first order formulas (with the same free variables as Φ minus {x}).

The formulas obtained using just (1) and (2) are called quantifier free.
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1. Quantifier eliminaton for the theory of real closed fields

We recall from last lecture the definition of first order formulas in the
language of real closed field:

Definition 1.1. A first order formula in the language of real closed
fields is obtained as follows recursively:

(1) if f(x) ∈ Q[x1, . . . , xn], n > 1, then

f(x) > 0, f(x) > 0, f(x) = 0, f(x) 6= 0

are first order formulas (with free variables x = (x1, . . . , xn));

(2) if Φ and Ψ are first order formulas, then

Φ ∧Ψ, Φ ∨Ψ, ¬Φ

are also first order formulas (with free variables given by the union
of the free variables of Φ and the free variables of Ψ);

(3) if Φ is a first order formula then

∃x Φ and ∀x Φ

are first order formulas (with same free variables as Φ minus {x}).

The formulas obtained using just (1) and (2) are called quantifier free.

Definition 1.2. Let Φ(x1, . . . , xn) and Ψ(x1, . . . , xn) be first order formu-
las in the language of real closed fields with free variables contained in
{x1, . . . , xn}. We say that Φ(x) and Ψ(x) are equivalent if for every real
closed field R and every r ∈ Rn,

Φ(r) holds in R ⇐⇒ Ψ(r) holds in R.
1
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If Φ and Ψ are equivalent, we write Φ ∼ Ψ.

Remark 1.3. (Normal form of quantifier free formulas). Every quantifier
free formula is equivalent to a finite disjunction of finite conjuctions of for-
mulas obtained using construction (1).

Proof. Like showing that every semialgebraic subset of Rn is a finite union (=
finite disjunction) of basic semialgebraic sets (= finite conjuction of formulas
of type (1)). �

Theorem 1.4. (Tarski’s quantifier elimination theorem for real closed fields).
Every first order formula in the language of real closed fields is equivalent to
a quantifier free formula.

Proof. Since all formulas of type (1) are quantifier free, it suffices to show
that

C := the set of first order formulas which are equivalent to quantifier free formulas

is closed under constructions of (2) and (3).

Closure under 2. If Φ ∼ Φ′ and Ψ ∼ Ψ′, then

Φ ∨Ψ ∼ Φ′ ∨Ψ′

Φ ∧Ψ ∼ Φ′ ∧Ψ′

¬Φ ∼ ¬Φ′.

Closure under 3. It is enough to consider ∃x Φ, because

∀x Φ ↔ ¬∃x (¬Φ).

We claim that if Φ is equivalent to a quantifier free formula then ∃x Φ is
equivalent to a quantifier free formula. Since

∃x (Φ1 ∨ · · · ∨ Φk) ∼ (∃x Φ1) ∨ · · · ∨ (∃x Φk),

using the normal form of quantifier free formulas (Remark 1.3), we can
assume that Φ is a finite conjunction of polynomial equations and inequali-
ties (i.e. a system S(T , x)).

Applying Tarski-Seidenberg’s Theorem:

∃x S(T ; x) ⇔
l∨

i=1

Si(t),

there exist finitely many finite conjunctions of polynomial equalities and
inequalities ϑ1, . . . , ϑl (corresponding to the systems S1(t), . . . , Sl(t)) such
that

∃x Φ ∼ ϑ1 ∨ · · · ∨ ϑl.

�
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2. Definable sets

Definition 2.1. Let Φ(T , X) a first order formula with free variables
T1, . . . , Tm, X1, . . . , Xn. Let R be a real closed field and t ∈ Rm. Then
Φ(t, X) is a first order formula with parameters in R, and t1, . . . , tm
are called the parameters.

Definition 2.2. Let R be a real closed field, n > 1. A subset A ⊆ Rn is said
to be definable (with parameters from R) in R if there is a first order for-
mula Φ(t, X) with parameters t ∈ Rm and free variables X = (X1, . . . , Xn),
such that

A = {r ∈ Rn : Φ(t, r) is true in R}.

Corollary 2.3. For any real closed field R the class of definable sets (with
parameters) in R coincides with the class of semialgebraic sets.

(For the second part of the lecture, see file of Lecture 13, from 1.4).
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Recall. Let R be a real closed field, a ∈ R. Define

sign(a) :=


1 if a > 0,

0 if a = 0,

−1 if a < 0.

The Tarski-Seidenberg Principle is the following result.

Theorem 1. Let fi(T ,X) = hi,mi
(T )Xmi + . . . + hi,0(T ) for i = 1, . . . , s

be a sequence of polynomials in n+1 variables (T = (T1, . . . , Tn), X) with
coefficients in Z. Let ε be a function from {1, . . . , s} to {−1, 0, 1}. Then there
exists a finite boolean combination B(T ) := S1(T )∨. . .∨Sp(T ) of polynomial
equations and inequalities in the variables T1, . . . , Tn with coefficients in Z
such that for every real closed field R and for every t ∈ Rn, the system

sign(f1(t,X)) = ε(1)
...

sign(fs(t,X)) = ε(s)

has a solution x ∈ R if and only if B(t) holds true in R.

Notation I. Let f1(X), . . . , fs(X) be a sequence of polynomials in R[X]. Let
x1 < . . . < xN be the roots in R of all fi that are not identically zero.

Set x0 := −∞ , xN+1 := +∞

Remark 1. Let m := max(degfi, i = 1, . . . , s). Then N ≤ sm.
Set Ik :=]xk, xk+1[ , k = 0, . . . , N

Remark 2. sign(fi(x)) is constant on Ik, for each i ∈ 1, . . . , s, for each
k ∈ 0, . . . , N .

1
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Set sign(fi(Ik)) := sign(fi(x)), x ∈ Ik

Notation II. Let SIGNR(f1, . . . , fs) be the matrix with s rows and 2N + 1
columns whose ith row (for i = {1, . . . , s}) is

sign
(
fi(I0)

)
, sign

(
fi(x1)

)
, sign

(
fi(I1)

)
, . . . , sign

(
fi(xN)

)
, sign

(
fi(IN)

)
.

i.e. SIGNR(f1, . . . , fs) is an s×(2N+1) matrix with coefficients in {−1, 0, 1}
and

SIGNR(f1, ..., fs) :=


signf1(I0) signf1(x1) . . . signf1(xN) signf1(IN)
signf2(I0) signf2(x1) . . . signf2(xN) signf2(IN)

...
...

...
...

signfs(I0) signfs(x1) . . . signfs(xN) signfs(IN)


Remark 3. Let f1, . . . , fs ∈ R[X] and ε : {1, . . . , s} → {−1, 0,+1}. The
system 

sign(f1(X)) = ε(1)
...

sign(fs(X)) = ε(s)

has a solution x ∈ R if and only if one column of SIGNR(f1, . . . , fs) is

precisely the matrix

ε(1)
...

ε(s)

.

Notation III. Let MP×Q := the set of P×Q matrices with coefficients in
{−1, 0,+1}.

Set Ws,m := the disjoint union of Ms×(2l+1), for l = 0, . . . , sm.

Notation IV. Let ε : {1, . . . , s} → {−1, 0, 1}. Set

W (ε) = {M ∈ Ws,m : one column of M is

ε(1)
...

ε(s)

} ⊆ Ws,m
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Lemma 2. (Reformulation of remark 3 using notation IV) Let ε : {1, . . . , s} →
{−1, 0,+1}, R real closed field and f1(X), . . . , fs(X) ∈ R[X] of degree ≤ m.
Then the system 

sign(f1(X)) = ε(1)
...

sign(fs(X)) = ε(s)

has a solution x ∈ R if and only if SIGNR(f1, . . . , fs) ∈ W (ε).

By Lemma 2 (setting W ′ = W (ε)), we see that the proof of Theorem 1
reduces to showing the following proposition:

Main Proposition 3. Let fi(T ,X) := hi,mi
(T )Xmi + . . . + hi,0(T ) for

i = 1, . . . , s be a sequence of polynomials in n+1 variables with coefficients
in Z, and let m := max{mi|i = 1, . . . , s}. Let W

′
be a subset of Ws,m. Then

there exists a boolean combination B(T ) = S1(T )∨ . . .∨Sp(T ) of polynomial
equations and inequalities in the variables T with coefficients in Z, such that,
for every real closed field R and every t ∈ Rn, we have

SIGNR(f1(t,X), . . . , fs(t,X) ∈ W ′ ⇔ B(t) holds true in R.

The proof of the main Proposition will follow by induction from the next
main lemma, where we will show that SIGNR(f1, . . . , fs) is completely de-
termined by the SIGNR˝of a (possibly) longer but simpler sequence of
polynomials, i.e. SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs), where f

′
s = the deriva-

tive of fs, and g1, . . . , gs are the remainders of the euclidean division of fs by
f1, . . . , fs−1, f

′
s, respectively.

First we will state and prove the lemma and then prove the proposition.
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Main Lemma. For any real closed field R and every sequence of polynomials
f1, . . . , fs ∈ R[X] of degrees ≤ m, with fs nonconstant and none of the
f1, . . . , fs−1 identically zero, we have
SIGNR(f1, . . . , fs) ∈ Ws,m is completely determined by
SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs) ∈ W2s,m, where f

′
s is the derivative of fs,

and g1, . . . , gs are the remainders of the euclidean division of fs by f1, . . . , fs−1, f
′
s,

respectively.
Equivalently, the map ϕ : W2s,m −→ Ws,m

SIGNR(f1, . . . , fs−1, f
′

s, g1, . . . , gs) 7−→ SIGNR(f1, . . . , fs)

is well defined.
In other words, for any (f1, . . . , fs), (F1, . . . , Fs) ∈ R[X],
SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs) = SIGNR(F1, . . . , Fs−1, F

′
s, G1, . . . , Gs)

⇒ SIGNR(f1, . . . , fs) = SIGNR(F1, . . . , Fs).

Proof. Assume w = SIGNR(f1, . . . , fs−1, f
′
s, g1, . . . , gs) is given.

Let x1 < . . . < xN , with N ≤ 2sm, be the roots in R of those polyno-
mials among f1, . . . , fs−1, f

′
s, g1, . . . , gs that are not identically zero. Extract

from these the subsequence xi1 < . . . < xiM of the roots of the polynomials
f1, . . . , fs−1, f

′
s. By convention, let xi0 := x0 = −∞ ; xiM+1

:= xN+1 = +∞.
Note that the sequence xi1 < . . . < xiM depends only on w.
For k = 1, . . . ,M one of the polynomials f1, . . . , fs−1, f

′
s vanishes at xik . This

allows to choose a map (determined by w)

θ : {1, . . . ,M} → {1, . . . , s}
such that fs(xik) = gθ(k)(xik)(
This goes via polynomial division fs = fθ(k)qθ(k)+gθ(k), where fθ(k)(xik) = 0

)
.

Claim I. The existence of a root of fs in an interval ]xik , xik+1
[, for k =

0, . . . ,M depends only on w.

1
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Proof of Claim I .
Case 1: fs has a root in ]−∞, xi1 [ (if M 6= 0) if and only if

sign
(
f

′
s( ]−∞, x1[ )

)
sign

(
gθ(1)(xi1)

)
= 1,

equivalently iff
sign

(
f

′
s( ]−∞, x1[ )

)
= signfs(xi1).

(⇒) We want to show that if sign
(
f

′
s( ]−∞, x1[ )

)
= signfs(xi1),

then fs has a root in ]−∞, xi1 [.
Suppose on contradiction that fs has no root in ] − ∞, xi1 [, then
signfs must be constant and nonzero on ]−∞, xi1 ], so we get
0 6= signfs( ]−∞, x1[ ) = signfs( ]−∞, xi1 ] ) = signfs(xi1) =
signf

′
s( ]−∞, x1[ )

⇒ signfs( ]−∞, x1[ ) = signf
′
s( ]−∞, x1[ ), a contradiction

[
because

on ] −∞,−D[ : signf(x) = (−1)msign(d) for f = dxm + . . . + d0
and signf

′
(x) = (−1)m−1sign(md) for f

′
= mdxm−1 + . . . ,

see Corollary 2.1 of lecture 6 (05/11/09)
]
.

(⇐) Assume that fs has a root (say) x ∈ ]−∞, xi1 [.
Note that signfs(xi1) 6= 0

[
otherwise fs(xi1) = f(xi1) = 0, so (by

Rolle’s theorem) f
′
s has a root in ]x, xi1 [ and the only possibility is

x1 ∈ ]x, xi1 [ (by our listing), but then x1 = xi1 , a contradiction
]
.

Note also that fs cannot have two roots (counting multiplicity) in

]−∞, xi1 [
[
otherwise f

′
s will be forced to have a root in ]−∞, xi1 [,

a contradiction as before
]
.

So

−signfs
(

]−∞, x[
)

= signfs
(

]x, xi1 ]
)

= signfs(xi1),

also (by same argument as before)

−signfs
(

]−∞, x[
)

= signf
′
s

(
]−∞, x1[

)
,

therefore, we get

signf
′
s

(
]−∞, x1[

)
= signfs(xi1). � (case 1)

Case 2: Similarly one proves that: fs has a root in ]xiM ,+∞[ (if M 6= 0) if
and only if

sign
(
f

′
s( ]xN ,+∞[ )

)
sign

(
gθ(M)(xiM )

)
= −1,(

i.e. iff signf
′
s( ]xN ,+∞[ ) = −signfs(xiM ) 6= 0

)
.

Case 3: fs has a root in ]xik , xik+1
[, for k = 1, . . . ,M − 1, if and only if

sign
(
gθ(k)(xik)

)
sign

(
gθ(k+1)(xik+1

)
)

= −1,
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equivalently iff
signfs(xik) = −signfs(xik+1

).(
Proof is clear because if fs has a root in ]xik , xik+1

[, then this root is
of multipilicty 1 and therefore a sign change must occur.

)
Case 4: fs has exactly one root in ]−∞,+∞[ if M = 0. � (claim I)

Claim II. SIGNR(f1, . . . , fs) depends only on w.
Proof of Claim II .
Notation: Let y1 < . . . < yL, with L ≤ sm, be the roots in R of the
polynomials f1, . . . , fs. As before, let y0 := −∞, yL+1 := +∞.
Set Ik := (yk, yk+1), k = 0, . . . , L.

Define

ρ : {0, . . . , L+ 1} −→ {0, . . . ,M + 1} ∪ {(k, k + 1) | k = 0, . . . ,M}

l 7−→

{
k if yl = xik ,

(k, k + 1) if yl ∈]xik , xik+1
[

Note that by Claim I, L and ρ depends only on w. So, to prove claim II it is
enough to show that SIGNR(f1, . . . , fs) depends only on ρ and w.

Also,

SIGNR(f1, ..., fs) :=


signf1(I0) signf1(y1) . . . signf1(yL) signf1(IL)

...
...

...
...

signfs−1(I0) signfs−1(y1) . . . signfs−1(yL) signfs−1(IL)
signfs(I0) signfs(y1) . . . signfs(yL) signfs(IL)


is an s×(2L+ 1) matrix with coefficients in {−1, 0,+1}.

Case 1: j = 1, . . . , s− 1
For l ∈ {0, . . . , L+ 1} we have

• if ρ(l) = k ⇒ sign
(
fj(yl)

)
= sign

(
fj(xik)

)
,

• if ρ(l) = (k, k + 1)⇒ sign
(
fj(yl)

)
= sign

(
fj( ]xik , xik+1

[ )
)
.

So, sign
(
fj(yl)

)
is known from w and ρ, for all j = 1, . . . , s − 1 and l ∈

{0, . . . , L+ 1}.
We also have

• if ρ(l) = k or (k, k+1)⇒ sign
(
fj( ]yl, yl+1[ )

)
= sign

(
fj( ]xik , xik+1

[ )
)
.
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So, sign
(
fj( ]yl, yl+1[ )

)
is known from w and ρ, for all j = 1, . . . , s− 1 and

l ∈ {0, . . . , L+ 1}.
Thus one can reconstruct the first s− 1 rows of SIGNR(f1, ..., fs) from w.

Case 2: j = s
For l ∈ {0, . . . , L+ 1} we have

• if ρ(l) = k ⇒ sign
(
fs(yl)

)
= sign

(
gθ(k)(xik)

)
,

• if ρ(l) = (k, k + 1)⇒ sign
(
fs(yl)

)
= 0.

So, sign
(
fs(yl)

)
is known from w and ρ, for all l ∈ {0, . . . , L+1} and therefore

can also be reconstructed from w.
Now remains the most delicate case that concerns sign

(
fs( ]yl, yl+1[ )

)
:

For l ∈ {0, . . . , L+ 1} we have

• if l 6= 0, ρ(l) = k ⇒

sign
(
fs( ]yl, yl+1[ )

)
=

{
sign

(
gθ(k)(xik)

)
if it is 6= 0,

sign
(
f

′
s( ]xik , xik+1

[ )
)

otherwise.[
This is because

(
ρ(l) = k if yl = xik , so

)
:

- if gθ(k)(xik) = fs(xik) 6= 0, then by continuity sign is constant, and

- if gθ(k)(xik) = fs(xik) = 0, then on ]xik , xik+1
[ :{

f
′
s ≥ 0⇒ fs(xik) < fs(y) for y < xk+1, so fs(y) > 0,

f
′
s ≤ 0⇒ −fs(xik) < −fs(y) for y < xk+1, so fs(y) < 0(

using lemma (Poizat): In a real closed ordered field, if P is a noncon-

stant polynomial s.t. P
′ ≥ 0 on [a, b], a < b, then P (a) < P (b)

)
.
]

• if l 6= 0, ρ(l) = (k, k+1)⇒ sign
(
fs( ]yl, yl+1[ )

)
= sign

(
f

′
s( ]xik , xik+1

[ )
)
.[

We argue as follows
(
noting that ρ(l) = (k, k + 1) if yl ∈]xik , xik+1

[
)
:

sign
(
fs( ]yl, yl+1[ )

)
is constant so at any rate is equal to sign

(
fs( ]yl, xik+1

[ )
)
,

now using the fact that fs(yl) = 0 and the same lemma (stated above)
we get, for any a ∈ ]yl, xik+1

[ :{
f

′
s ≥ 0⇒ fs(yl) < fs(a), so fs(a) > 0,

f
′
s ≤ 0⇒ −fs(yl) < −fs(a), so fs(a) < 0

i.e. fs has same sign as f
′
s.
]

• if l = 0⇒ sign
(
fs( ]−∞, y1[ )

)
= sign

(
f

′
s( ]−∞, x1[ )

)
(as before). �
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THE TARSKI-SEIDENBERG PRINCIPLE

Main Proposition. Let fi(T ,X) := hi,mi(T )X
mi

+ . . . + hi,0(T ) for i =

1, . . . , s be a sequence of polynomials in n+1 variables with coe�cients in

Z, and let m := max{mi|i = 1, . . . , s}. Let W

0
be a subset of Ws,m. Then

there exists a boolean combination B(T ) = S1(T )_ . . ._Sp(T ) of polynomial

equations and inequalities in the variables T with coe�cients in Z, such that,

for every real closed field R and every t 2 R

n
, we have

SIGNR

�
f1(t,X), . . . , fs(t,X)

�
2 W

0 , B(t) holds true in R.

Proof. Without loss of generality, we assume that none of f1, . . . , fs is

identically zero and that hi,mi(T ) is not identically zero for i = 1, . . . , s. To

every sequence of polynomials (f1, . . . , fs) associate the s-tuple (m1, . . . ,ms),

where deg(fi) = mi. We compare these finite sequences by defining a strict

order as follows:

� := (m

0
1, . . . ,m

0
t) � ⌧ := (m1, . . . ,mt)

if there exists p 2 N such that, for every q > p,

-the number of times q appears in � = the number of times q appears in ⌧ ,

and

-the number of times p appears in � < the number of times q appears in ⌧ .

This order � is a total order

1
on the set of finite sequences.

⇥
Example: let m = max({m1, . . . ,ms}) = ms (say), � and ⌧ be the sequence

of degrees of the sequences (f1, . . . , fs�1, f
0
s, g1, . . . , gs) and (f1, . . . , fs�1, fs)

respectively, i.e.

�  (f1, . . . , fs�1, f
0
s, g1, . . . , gs),

⌧  (f1, . . . , fs�1, fs)

1This was a mistake in the book Real Algebraic Geometry of J. Bochnak, M. Coste,
M.-F. Roy. For corrected argument, see Appendix I following this proof.

1
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then � � ⌧ .

⇤

Let m = max{m1, . . . ,ms}.
In particular using p = m we have:

�
deg(f1), . . . , deg(fs�1), deg(f

0
s), deg(g1), . . . , deg(gs)

�
�
�
deg(f1), . . . , deg(fs)

�
.

Ifm = 0, then there is nothing to show, since SIGNR

�
f1(t,X), . . . , fs(t,X)

�
=

SIGNR

�
h1,0(t), . . . , hs,0(t)

� ⇥
the list of signs of �constant terms�

⇤
.

Suppose that m � 1 and ms = m = max{m1, . . . ,ms}. Let W
00 ⇢ W2s,m be

the inverse image of W

0 ⇢ Ws,m under the mapping ' (as in main lemma).

Set W

00
=

�
signR(f1, . . . , fs�1, f

0
s, g1, . . . , gs) | signR(f1, . . . , fs) 2 W

0 
.

-Case 1. hi,mi(t) 6= 0 for all i = 1, . . . , s

By the main lemma, for every real closed field R and for every t 2 R

n
such

that hi,mi(t) 6= 0 for i = 1, . . . , s, we have

SIGNR

�
f1(t,X), . . . , fs(t,X)

�
2 W

0

,

SIGNR

�
f1(t,X), . . . , fs�1(t,X), f

0
s(t,X), g1(t,X), . . . , gs(t,X)

�
2 W

00
,

where f

0
s is the derivative of fs with respect to X, and g1, . . . , gs are the re-

mainders of the euclidean division (with respect toX) of fs by f1, . . . , fs�1, f
0
s,

respectively (multiplied by appropriate even powers of h1,m1 , . . . , hs,ms , re-

spectively, to clear the denominators).

Now, the sequence of degrees in X of f1, . . . , fs�1, f
0
s, g1, . . . , gs is smaller than

[the sequence of degrees in X of f1, . . . , fs i.e.] (m1, . . . ,ms) w.r.t. the order

�.

-Case 2. At least one of hi,mi(t) is zero

In this case we can truncate the corresponding polynomial fi and obtain

a sequence of polynomials, whose sequence of degrees in X is smaller than

(m1, . . . ,ms) w.r.t. the order �.

This completes the proof of main propostion and also proves the Tarski-

Seidenberg principle. 22
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APPENDIX I: ORDER ON THE SET OF TUPLES OF INTEGERS

Set N :=

t
nœN Nn

We define on N an equivalence relation ≥:

for ‡ := (n1, . . . , n

s

) and · := (m1, . . . , m

t

) in N , we write ‡ ≥ · if and only if

the following holds:

s = t and there exists a permutation g of {1, . . . , s} such that m

i

= n

g(i) for all

i œ {1, . . . , s}.

For any ‡ œ N , the equivalence class of ‡ will be denoted by [‡]

For any ‡ œ N and p œ N, we set f

p

(‡) := (number of occurrences of p in ‡).

For any ‡,· œ N and p œ N we define the property P(p, ‡,· ) by:

P(p, ‡,· ) © (f

p

(‡) < f

p

(·)) · (’q > p, f

q

(‡) = f

q

(·)).

Set M := N/ ≥
Note that if ‡

Õ
, ·

Õ
are permutations of ‡ and · , then P(p, ‡,· ) is equivalent to

P(p,‡

Õ
, ·

Õ
) for all p œ N. This allows us to define a binary relation < on M :

[‡] < [· ] if and only if there exists p œ N such that P(p, ‡,· ) is satisfied.

Remark 1

If p œ N satisfies P(p, ‡,· ), then for all q Ø p, f

q

(‡) Æ f

q

(·)

Proposition 1

< defines a strict order on M .

Proof. We want to prove that < is antisymmetric and transitive:

antisymmetry: Let ‡,· œ N such that [‡] < [· ]; we want to show [· ] ⌅ [‡]

Choose p œ N satisfying P(p, ‡,· ) and let q œ N.

If q Ø p, then by remark 1 we have f

q

(·) ⌅ f

q

(‡) so the first condition of

P(q, ·,‡ ) fails. Moreover, we have f

p

(‡) < f

p

(·), so if q < p the second

condition of P(q, ·,‡ ) fails.

Thus, P(q, ·,‡ ) fails for every q œ N, which proves [· ] ⌅ [‡].

1
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transitivity: Let ‡, ·,fl œ N such that [fl] < [‡] and [‡] < [· ]

Choose p1, p2 œ N such that P(p1,fl ,‡ ) and P(p2, ‡ , ·) hold.

Set p := max(p1, p2).

If q > p, then in particular q > p1 so f

q

(fl) = f

q

(‡); similarly, we have q > p2
so f

q

(‡) = f

q

(·) hence f

q

(fl) = f

q

(·).

Since p Ø p1, p2, we have by remark 1: f

p

(fl) Æ f

p

(‡) Æ f

p

(·). If p = p1,
the first inequality is strict, hence f

p

(fl) < f

p

(·); if p = p2 then the second

inequatlity is strict, which leads to the same conclusion.

This proves that P(p,fl ,· ) is satisfied, hence [fl] < [· ].

Proposition 2

The order < is total on M

Proof. Let ‡ = (n1, . . . , n

s

), · = (m1, . . . , m

t

) œ N be non-equivalent.

Set A := {q œ {n1, . . . , n

s

, m1, . . . , m

t

} | f

q

(‡) ”= f

q

(·)}.

Note that A = ? if and only if ‡ ≥ · , so by hypothesis we have A ”= ?. Thus,

we can define p := maxA.

By definition of p, we have f

q

(·) = f

q

(‡) for all q > p.

Moreover, since p œ A, we have f

p

(‡) ”= f

p

(·).

If f

p

(‡) < f

p

(·), then P(p, ‡,· ) is satisfied, so [‡] < [· ]; if f

p

(·) < f

p

(‡), then

P(p, ·,‡ ) is satisfied, so [· ] < [‡].

Note that we have an algorithm which determines how to order the pair (‡,· )

and gives us an apropriate p:

p := max{n1, . . . , n

s

, m1, . . . , m

t

}.

while p Ø 0:

if f

p

(‡) > f

p

(·) return (‡ > ·, p)

if f

p

(‡) < f

p

(·) return (‡ < ·, p)

p := p ≠ 1

Proposition 3

(M, <) is well-ordered:

Proof. For any ‡ = (n1, . . . , n

s

) œ N , set m

‡

:= max(n1, . . . , n

s

). Since m

‡

is left

unchanged by permutation of ‡, so we can define m[‡] := m

‡

unambiguously.

Note that for any a, b œ M , m

a

< m

b

implies a < b. Indeed, if m

a

< m

b

, then

for any p > m

b

, we have f

p

(b) = 0 = f

p

(a); moreover, f

mb
(a) = 0 < f

mb
(b), which

2
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proves that P(m

b

, a, b) holds.

Let A be a non-empty subset of M and set m := min{m

a

| a œ A}
We are going to prove by induction on m that A has a smallest element.

m=0: If m = 0, then the set A0 := {[‡] œ A | ‡ only contains zeros } is non-empty.

Let a be the element of A0 of minimal length; then I claim that a is the

smallest element of A.

Indeed: let b œ A, b ”= a.

If b œ A0, then a and b both only contain zeros, so for all p > 0 f

p

(a) = 0 =

f

p

(b); moreover, by choice of a, we have f0(a) = length(a) < length(b) =

f0(b). This proves that P(0, a, b) holds, hence a < b.

If b œ A\A0, then m

b

> 0 = m

a

so b > a.

m ≠ 1 æ m: Assume m Ø 1.

Set B := {a œ A | m

a

= m}, n := min{f

m

(a) | a œ B} and C := {a œ B |
f

m

(a) = n}.

I claim that for any c œ C and any a œ A\C, c < a.

Indeed:

– if a œ B\C, then by definition of C we have f

m

(c) < f

m

(a). Since

a, c œ B, it follows from the definition of B that m is the maximal

element of both a and c, so that f

p

(a) = 0 = f

p

(c) for all p > m. Thus,

P(m, c, a) holds.

– If a /œ B, then by definition of B we have m

a

> m = m

c

, hence a > c.

Thus, it su�ces to prove that C has a smallest element.

For any c œ C, we denote by c

Õ
the element of M obtained from c by removing

every occurrence of m. Set C

Õ
:= {c

Õ | c œ C}. Since m is the maximal

element of every c œ C, we have m

c

Õ Æ m ≠ 1 for every c

Õ œ C

Õ
, hence

min{m

c

Õ | c

Õ œ C

Õ} Æ m ≠ 1. By induction hypothesis, C

Õ
then has a smallest

element c

Õ
. c is then the smallest element of C.

Note that there is a recursive algorithm which takes a subset of M as an

argument and returns its smallest element:

smallest_element(A):

m := min{m

a

| a œ A}

3
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B := {a œ A | m

a

= m}
n = min{f

m

(b) | b œ B}
C := {b œ B | f

m

(b) = n}
if C is a singleton then return its only element

C

Õ
:= {c

Õ | c œ C}
c

Õ
:=smallest_element(C

Õ
)

return the concatenation of c

Õ
with (m, . . . , m)

¸ ˚˙ ˝
n times

Proposition 4

The ordinal type of (M, <) is Ê

Ê

Proof. For any n œ N, set A

n

:= {a œ M | m

a

= n}.

We are going to build an isomorpism from Ê

Ê

to M by induction. More precisely,

we are going to build a sequence („

n

)

nœN of maps such that:

• for any n œ N, „

n

is an isomorphism from Ê

n+1
to A

n

.

• for any n œ N, „

n+1 extends „

n

.

Taking „ :=

t
nœN „

n

, we obtain an isomorphism „ from

t
nœN Ê

n+1
= Ê

Ê

tot
nœN A

n

= M .

n = 0 Note that we have (0) < (0, 0) < (0, 0, 0) < (0, 0, 0, 0) < . . . , so an isomor-

phism from Ê to A0 is given by n ‘æ (0, 0, . . . , 0)

¸ ˚˙ ˝
n+1 times

n æ n + 1 Assume we have an isomorphism „

n

: Ê

n+1 æ A

n

. Remember that Ê

n+2
is

the order type of (Ê ◊ Ê

n+1
, <

lex

).

Define: „

n+1(–,— ) := „

n

(—) · (n + 1, . . . , n + 1)

¸ ˚˙ ˝
– times

(here ‘·’ means concatenation). This is an isomorphism from (Ê ◊ Ê

n+1
, <

lex

)

to A

n+1.

4
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1. Algebraic sets and constructible sets

Definition 1.1. Let K be a field. Let f1, . . . , fk ∈ K[x] = K[x1, . . . , xn]. A
set of the form

Z(f1, . . . , fk) := {x ∈ Kn : f1(x) = · · · = fk(x) = 0}

is called an algebraic set.

Definition 1.2. A subset C ⊆ Kn is constructible if it is a finite Boolean
combination of algebraic sets.

Remark 1.3.
(1) A constructible subset of K is either finite or cofinite.

(2) Let K = R and consider the algebraic set

Z = {(x, y) ∈ K2 : x2 − y = 0}.

Its image under the projection π(x, y) = y is π(Z) = [0,∞[ which is
neither finite nor cofinite.

This shows that in general a Boolean conbination of algebraic sets
is not closed under projections.

Definition 1.4. A function F : Kn → Km is a polynomial map if there
are polynomials F1, . . . , Fm ∈ K[x1, . . . , xn] such that for every x ∈ Kn,

F (x) = (F1(x), . . . , Fm(x)) ∈ Km.

1
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Example 1.5. The projection map∏
n : Kn+m −→ Kn

(x1, . . . , xn+m) 7→ (x1, . . . , xn)

is a polynomial map, where for every i, 1 6 i 6 n,

Pi(x1, . . . , xn, xn+1, . . . , xn+m) = xi

and
∏

n = (P1, . . . , Pn).

By Chevalley’s Theorem (Quantifier elimination for algebraically closed
fields), if K is an algebraically closed field, then the image of a constructible
set over K under a polynomial map is constructible (in particular under
projections).

Let R be now a real closed field.

Remark 1.6.
(1) A semialgebraic subset of Rn is the projection of an algebraic subset

of Rn+m for some m ∈ N, e.g. the semialgebraic set

{x ∈ Rn : f1(x) = · · · = fl(x) = 0, g1(x) > 0, . . . , gm(x) > 0}

is the projection of the algebraic set

{(x, y) ∈ Rn+m : f1(x) = · · · = fl(x) = 0, y2
1g1(x) = 1, . . . , y2

mgm(x) = 1}.

(2) Every semialgebraic subset of Rn is in fact the projection of an alge-
braic subset of Rn+1 (Motzkin, The real solution set of a system of
algebraic inequalities is the projection of a hypersurface in one more
dimension, 1970 Inequalities, II Proc. Second Sympos., U.S. Air
Force Acad., Colo., 1967 pp. 251–254 Academic Press, New York).

2. Topology

For x = (x1, . . . , xn) ∈ Rn, we have the norm ||x || :=
√
x2

1 + · · ·+ x2
n.

Let r ∈ R, r > 0.

Bn(x, r) = {y ∈ Rn : || y − x || < r} is an open ball.

B̄n(x, r) = {y ∈ Rn : || y − x || 6 r} is a closed ball.

Sn−1(x, r) = {y ∈ Rn : || y − x || = r} is a n− 1-sphere.

Sn−1 = Sn−1(0, 1) 0 ∈ Rn.

Exercise 2.1.
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− Bn(x, r), B̄n(x, r), Sn−1(x, r) are semialgebraic.

− Polynomials are continuous with respect to the Euclidean topology.

− The open balls form a basis for the Euclidean topology = norm topol-
ogy = interval topology.

− The closure and the interior of a semialgebraic set are semialgebraic.

Remark 2.2. It is not true that the closure of a semialgebraic set is obtained
by relaxing the inequalities! For instance

{x > 0} ∩ {x < 0} = ∅.

3. Semialgebraic functions

Definition 3.1. Let A ⊆ Rm, B ⊆ Rn be two semialgebraic sets. A function

f : A −→ B

is semialgebraic if its graph

Γf = {(x, y) ∈ A×B : y = f(x)}

is a semialgebraic subset of Rm+n.

Example 3.2.
(1) Any polynomial mapping f : A → B between semialgebraic sets is

semialgebraic.

(2) More generally, any regular rational mapping f : A → B (i.e. all
coordinates are rational functions whose denominators do not vanish
on A) is semialgebraic.

(3) If A is a semialgebraic set and f : A → R, g : A → R are semialge-
braic maps, then |f |, max(f, g), min(f, g) are semialgebraic maps.

(4) If A is a semialgebraic set and f : A→ R is a semialgebraic map with
f > 0 on A, then

√
f is a semialgebraic map.

Proposition 3.3.
(1) The composition g◦f of semialgebraic maps f and g is semialgebraic.

(2) Let f : A→ B and g : C → D semialgebraic maps. Then the map

f × g : A× C −→ B ×D

(x, y) 7→ (f(x), g(y))
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is semialgebraic.

(3) Let f : A→ B be semialgebraic.

(i) S ⊆ A semialgebraic ⇒ f(S) is semialgebraic.
(ii) T ⊆ B semialgebraic ⇒ f−1(T ) is semialgebraic.

(4) Let A be a semialgebraic set. Then

S(A) = {f : A→ R : f is semialgebraic}

is a commutative ring under pointwise addition and pointwise multi-
plication.

Proposition 3.4. Let A ⊆ Rn be a non-empty semialgebraic set.
(i) For every x ∈ Rn the distance between x and A:

dist(x,A) := inf({||x− y|| : y ∈ A})

is well-defined.

(ii) The function

dist : Rn −→ R

x 7→ dist(x,A)

is continuous semialgebraic vanishing on the closure of A and positive
elsewhere.

4. Semialgebraic homeomorphisms

We have that every semialgebraic subset of R can be decomposed as the
union of finitely many points and open intervals. We shall generalize this to
higher dimension:

Definition 4.1. Let A,B be semialgebraic sets and f : A→ B. We say that
f is a semialgebraic homeomorphism if

(1) f is a bijection,
(2) f and f−1 are continuous and semialgebraic.

Definition 4.2. Let A,B be semialgebraic sets. We say that they are semi-
algebraically homeomorphic if there is a semialgebraic homeomorphism
f : A→ B.

Our aim is to show that every semialgebraic set can be decomposed as
the disjoint union of finetely many pieces which are semialgebraically home-
omorphic to open hypercubes (0, 1)d (possibly for different d ∈ N).
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Let R be a real closed field.

1. Cylindrical algebraic decomposition

Theorem 1.1. Let x = (x1, . . . , xn). Let f1(x, y), . . . , fs(x, y) be polynomials
in n+ 1 variables with coefficients in R. Then there exixts a partition of Rn

into a finite number of semialgebraic sets

Rn = A1 ∪̇ · · · ∪̇ Am

and for each i = 1, . . . ,m there exists a finite number (possibly 0) of contin-
uous semialgebraic functions ξi1, . . . , ξili defined on Ai with

ξi1 < · · · < ξili

ξij : Ai −→ R

and ξij(x) < ξij+1(x) for all x ∈ Ai, for all j = 1, . . . , li, such that

(i) for each x ∈ Ai, {ξi1(x), . . . , ξili(x)} = {roots of those polynomials
among f1(x, y), . . . , fs(x, y) which are not identically zero};

(ii) for each x ∈ Ai and y ∈ R, sign(f1(x, y)), . . . , sign(fs(x, y)) depend
only on sign(y − ξi1), . . . , sign(y − ξili).

We will prove this Theorem using the following Proposition:

Proposition 1.2. (Main proposition "with coefficients")
Let f1(x, y), . . . , fs(x, y) be polynomials in n+ 1 variables with coefficients in
R. Let q := maxi=1,...,s{deg in y of fi(x, y)} and w ∈Ws,q.

Then there exists a boolean combination Bw(x) of polynomial equations
and inequalities in the variables x with coefficients in R such that for any
x ∈ Rn,

signR(f1(x, y), . . . , fs(x, y)) = w ⇔ Bw(x) is satisfied in R.
1
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Proof. Let a ∈ Rp be the list of coefficients of the polynomials f1, . . . , fs.
Then for every k = 1, . . . , s,

fk(x, y) = Fk(a, x, y),

where Fk(t, x, y) ∈ Z[t, x, y] is a polynomial in p+ n+ 1 variables.
Then there is a boolean combination B∗

w(t, x) of polynomial equations and
inequalities in the variables (t, x) with coefficients in Z such that, for every
(t, x) ∈ Rp+n, we have

signR(F1(t, x, y), . . . , Fs(t, x, y)) = w ⇔ B∗
w(t, x) holds.

Now set Bw(x) = B∗
w(a, x). �

Let us prove now Theorem 1.1:

Proof of the Theorem. Without loss of generality we may assume that the
set {f1, . . . , fs} is closed under derivation with respect to the variable y
(because we can always remove the functions ξij that do not give the roots
of the polynomials belonging to the initial family, and the conclusions of the
theorem still hold with the remaining ξij ’s).

As in the previous Proposition, let q := maxi=1,...,s{deg in y of fi(x, y)}.
Now Ws,q is a finite set with

|Ws,q| = 3sq.

For w ∈Ws,q, define:

Aw : = {x ∈ Rn : Bw(x) is satisfied }
= {x ∈ Rn : signR(f1(x, y), . . . , fs(x, y)) = w}.

Observe that Aw is a semialgebraic set of Rn. Let A1, . . . , Am be the semi-
algebraic sets among the Aw that are non-empty, i.e.

{A1, . . . , Am} = {Aw : w ∈Ws,q and Aw 6= ∅}.

Note that by definition of Aw we have that A1, . . . , Am form a partition of
Rn (they are all disjoint because w1 6= w2 ⇒ Aw1 ∩ Aw2 = ∅, and for every
x ∈ Rn, x ∈ Aw with w = signR(f1(x, y), . . . , fs(x, y))).

Note also that by definition of Aw, signR(f1(x, y), . . . , fs(x, y)) = w ∈
Wq,s is constant on each Ai. In other words by definition of w there is
a number li 6 sq such that, for each x ∈ Ai, the polynomials among
f1(x, y), . . . , fs(x, y) which are not identically zero have altoghether li roots

ξi1(x) < · · · < ξili(x)

and moreover for every k = 1, . . . , s the signs

sign(fk(x, ξij(x))), j = 1, . . . , li

sign(fk(x, ] ξij(x), ξij+1(x) [)), j = 0, . . . , li
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depend only on i and not on x ∈ Ai (with the convention ξi0 = −∞ and
ξili+1

= +∞).
Now it remains to show that each ξij is semialgebraic and continuous.
The graph of ξij is

Γ(ξij) = {(x, y) ∈ Ai ×R : ∃ (y1, . . . , yli) ∈ R
li(

∏
k

fk(x, y1) = · · · =
∏
k

fk(x, yli) = 0

and y1 < · · · < yli and y = yj)}

(where k ranges over the subscripts of those polynomials fk(x, y) that are
not identically zero on Ai), and therefore the function ξij is semialgebraic.

To show the continuity of ξij , fix x0 ∈ Ai. Then yj = ξij(x0) is a simple
root of at least one of {f1(x0, y), . . . , fs(x0, y)} (closure under derivatives of
the family), say of f1(x0, y). For ε ∈ R small enough,

f1(x0, yj − ε)f1(x0, yj + ε) < 0.

Hence, in a neighbourhood U of x0 in Rn, we have

∀x ∈ U f1(x, yj − ε)f1(x, yj + ε) < 0

and f1(x, y) has a root between yj − ε and yj + ε is ξij(x). This proves that
ξij is continuous. �
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1. Decomposition of semialgebraic sets 1

Let R be a real closed field.

1. Decomposition of semialgebraic sets

In the last lecture we proved the following:

Proposition 1.1. (Main proposition "with coefficients")
Let f1(x, y), . . . , fs(x, y) be polynomials in n+1 variables with coefficients in
R. Let q := maxi=1,...,s{deg in y of fi(x, y)} and w ∈Ws,q.

Then there exists a boolean combination Bw(x) of polynomial equations
and inequalities in the variables x with coefficients in R such that for any
x ∈ Rn,

signR(f1(x, y), . . . , fs(x, y)) = w ⇔ Bw(x) is satisfied in R.

Theorem 1.2. Let x = (x1, . . . , xn). Let f1(x, y), . . . , fs(x, y) be polynomials
in n+ 1 variables with coefficients in R. Then there exixts a partition of Rn

into a finite number of semialgebraic sets

Rn = A1 ∪̇ · · · ∪̇ Am

and for each i = 1, . . . ,m there exists a finite number (possibly 0) of contin-
uous semialgebraic functions ξi1, . . . , ξili defined on Ai with

ξi1 < · · · < ξili

ξij : Ai −→ R

and ξij(x) < ξij+1(x) for all x ∈ Ai, for all j = 1, . . . , li, such that

(i) for each x ∈ Ai, {ξi1(x), . . . , ξili(x)} = {roots of those polynomials
among f1(x, y), . . . , fs(x, y) which are not identically zero};

(ii) for each x ∈ Ai and y ∈ R, sign(f1(x, y)), . . . , sign(fs(x, y)) depend
only on sign(y − ξi1), . . . , sign(y − ξili).

1
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Definition 1.3. Let f1(x, y), . . . , fs(x, y) be polynomials in n+ 1 variables
with coefficients in R. A partition of Rn into a finite number of semialgebraic
sets

Rn = A1 ∪̇ · · · ∪̇ Am

together with continuous semialgebraic functions

ξi1 < · · · < ξili : Ai −→ R

satisfying properties (i) and (ii) of Theorem 1.2 is called a slicing of f1, . . . , fs

and is denoted by

(Ai ; (ξij)j=1,...,li)i∈{1,...,m}

If the A1, . . . , Am are given by boolean conbinations on the polynomials
g1, . . . , gt ∈ R[x1, . . . , xn], we say that the g1, . . . , gt slice the f1, . . . , fs.

Lemma 1.4. Let f1(x, y), . . . , fs(x, y) be polynomials in R[x, y] and
(Ai ; (ξij)j=1,...,li)i∈{1,...,m} a slicing of f1, . . . , fs. Then for every i,
1 6 i 6 m, and every j, 0 6 j 6 li, the slice

]ξij , ξij+1[ := {(x, y) ∈ Rn+1 : x ∈ Ai and ξij(x) < y < ξij+1(x)}

is semialgebraic and semialgebraically homeomorphic to Ai × ]0, 1[ (with the
convention ξi0 = −∞ and ξili+1

= +∞).

Proof. Each slice is semialgebraic, since Ai and the functions ξij , j = 1, . . . , li
are semialgebraic. We now give explicity the semialgebraic homeomorphism

h : ]ξij , ξij+1[ −→ Ai×]0, 1[.

For j = 1, . . . , li − 1 define:

h(x, y) = (x, (y − ξij(x))/(ξij+1(x)− ξij(x))).

For j = 0, ξi0 = −∞, define (if li 6= 0):

h(x, y) = (x, (1 + ξi,1(x)− y)−1).

For j = li 6= 0, ξili+1
= +∞, define:

h(x, y) = (x, (y − ξi,li(x) + 1)−1).

If li = 0, ξ0 = −∞ and ξ1 = +∞, define:

h(x, y) = (x, (y +
√

1 + y2)/2
√

1 + y2).
�

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 70



REAL ALGEBRAIC GEOMETRY LECTURE NOTES (17: 15/12/09) 3

Theorem 1.5. Every semialgebraic subset of Rn is the disjoint union of a
finite number of semialgebraic sets, each of them semialgebraically homeo-
morphic to an open hypercube ]0, 1[d⊂ Rd, for some d ∈ N (where ]0, 1[0 is a
point).

Proof. By induction on n.

For n = 1, we already know that every semialgebraic subset of R is the
union of a finite number of points and open intervals. Open intervals are
semialgebraically homeomorphic to ]0, 1[ and a point is semialgebraically
homeomorphic to ]0, 1[0.

We now assume that the result holds for n. Let S be a semialgebraic
subset of Rn+1, given by a boolean combination of sign conditions on the
polynomials f1, . . . , fs, and let (Ai ; (ξij)j=1,...,li)i∈{1,...,m} be a slicing of
f1, . . . , fs.

By induction, all Ai are semialgebraically homeomorphic to open hyper-
cubes. Moreover, S is the union of a finite number of semialgebraic sets that
are either the graph of a function ξij , or a slice ]ξij , ξij+1[ as in Lemma 1.4.

The graph of ξij is semialgebraically homeomorphic to Ai, while, by
Lemma 1.4, the slice ]ξij , ξij+1[ is semialgebraically homeomorphic toAi×]0, 1[.

�
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Let R be a real closed field.

1. Semialgebraic connectedness

In the last lecture we showed:

Theorem 1.1. Every semialgebraic subset of Rn is the disjoint union of a
finite number of semialgebraic sets, each of them semialgebraically homeo-
morphic to an open hypercube ]0, 1[d ⊂ Rd, for some d ∈ N (where ]0, 1[0 is
a point).

Question 1.2. Are the ]0, 1[d connected? (equivalently is Rd connected?)

If R = R yes, but in general no, because if R 6= R then R is not Dedekind
complete and therefore is disconnected.

So what is a reasonable notion of connectedness for semialgebraic sets?

Definition 1.3. Let A ⊂ Rn be a semialgebraic set. We say that A is semi-
algebraic connected (semialgebraisch zusammenhängend) if the following
equivalent conditions hold:

(1) A is not the disjoint union of two non-empty semialgebraic open (rel-
atively to A) subsets of A.

(2) There are no semialgebraic open sets U1, U2 of Rn such that

U1 ∩A 6= ∅ U2 ∩A 6= ∅
U1 ∩ U2 ∩A = ∅ and (U1 ∪ U2) ∩A = A.
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(3) If A1, A2 are disjoint semialgebraic subsets of A with A = A1 ∪ A2

and A1, A2 are open in A, then

either A1 = ∅ or A2 = ∅.

(4) Whenever F1 ⊆ A, F2 ⊆ A are semialgebraic and closed in A with
F1 ∪̇F2 = A, then

F1 = A or F2 = A.

Remark 1.4.

(i) A subset A ⊆ Rn is connected if it is not the disjoint union of two
nonempty open (relatively to A) subsets of A. So for any semialge-
braic set A,

A connected ⇒ A semialgebraic connected.

(ii) Every interval in R is semialgebraic connected, so

A semialgebraic connected ; A connected.

(iii) The property of being semialgebraic connected (as the property of
being connected) is preserved under semialgebraic homeomorphisms.

Theorem 1.5.

(a) Assume A, B ⊂ Rn semialgebraic connected with A ∩ B̄ 6= ∅. Then
A ∪B is semialgebraic connected.

(a′) If A and B are semialgebraic, with A ⊆ B ⊆ Ā,

A semialgebraic connected ⇒ B semialgebraic connected.

(b) A ⊆ Rm, B ⊆ Rn semialgebraic connected ⇒ A × B ⊆ Rn+m

semialgebraic connected.

(c) If A ⊆ Rm semialgebraic connected and f : A → Rn a continuous
semialgebraic map, then f(A) ⊆ Rn is semialgebraic connected.

Proof.
(a) Let A ∪ B = U ∪̇V with U , V semialgebraic and open in A ∪ B.

Assume for a contradiction U , V 6= ∅, say without loss of general-
ity A ∩ U 6= ∅. Since A is semialgebraic connected, we must have
A ⊆ U . Therefore A∩V = ∅, V ⊆ B and B semialgebraic connected
⇒ V = B and U = A. So A, B are open in A ∪ B and disjoint.
Therefore A ∩ B̄ = ∅, contradiction.

(a′) Exercise.
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(b) Let A×B = U ∪̇V with U , V semialgebraic and open in A×B. Set

A1 := {x ∈ A : {x} ×B ⊆ U}.
A2 := {x ∈ A : {x} ×B ⊆ V }.

Since B is semialgebraic connected, A = A1∪̇A2. Now A − A1 =
π1(V ) is open in A. Therefore A1 is closed in A, A2 is closed in A.
But A1, A2 semialgebraic and A semialgebraic connected⇒ A1 = ∅
or A2 = ∅, so U = ∅ or V = ∅.

(c) Exercise.
�

2. Semialgebraic connected components

Proposition 2.1. Let A ⊆ Rn be non-empty semialgebraic. There are
finitely many pairwise disjoint A1, . . . , Ar semialgebraic connected, semial-
gebraic subsets of A which are all open (therefore all closed) in A with

A = A1∪̇ · · · ∪̇Ar

and this decomposition is unique (up to permutation).

Proof. We know A = C1 ∪̇ · · · ∪̇Cm with Ci ≈ Rd semialgebraic, semialge-
braic connected Ci 6= ∅. We proceed by induction on m.

• m = 1. It is clear.

• m > 1. If C1 is open and closed in A, we can use induction on
C2 ∪ · · · ∪ Cm. Otherwise ∃ i ∈ {2, . . . ,m} such that C̄1 ∩ Ci 6= ∅ or
C1 ∩ C̄i 6= ∅. In both cases we get C1 ∪ Ci semialgebraic connected
(by 1.5(1.4)(a)) and we are done by induction again.

Uniqueness: Suppose A = A1 ∪̇ · · · ∪̇Ar = A′
1 ∪̇ · · · ∪̇A′

q with each Ai and
each A′

j open and closed in A and semialgebraic connected. Then each Ai is
contained in exactly one A′

j and viceversa every A′
j is contained in exactly

one Ai (Exercise).
�

Definition 2.2. The A1, . . . , Ar are called the semialgebraic connected
components of the semialgebraic set A ⊂ Rn.

Remark 2.3. A semialgebraic subset of Rn is semialgebraic connected if
and only if it is connected, so every semialgebraic subset of Rn has a finite
number of connected components which are semialgebraic.
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2. Closed and bounded semialgebraic sets 1

Let R be a real closed field.

1. Motivation

Theorem 1.1. (Curve-selection Lemma: Kurvenauswahllemma) Let A
be a semialgebraic subset of Rn, x ∈ Rn, x ∈ Ā = clos(A). Then there
exists a continuous semialgebraic map f : [ 0, 1 ] → Rn such that f(0) = x
and f(] 0, 1 ]) ⊂ A.

This has important consequences such as

(1) The image of a closed and bounded semialgebraic set under a con-
tinuous semialgebraic map is a closed and bounded semialgebraic set.

(2) A semialgebraic set is semialgebraic connected if and only if it is
semialgebraic path connected (wegzusammenhängend).

2. Closed and bounded semialgebraic sets

Definition 2.1. A subset A ⊆ Rn is bounded if ∃ r ∈ R such that ||a|| < r
∀ a ∈ A.

We have seen that for R 6= R we have to replace the notion of "connected"
by "semialgebraic connected".

Similarly the notion of compactness is problematic for R 6= R. In fact,
closed and bounded subsets of R need not be compact.

Example 2.2. LetR = Ralg = {real algebraic numbers} = the real closure of Q in R.
The interval [0, 1] ⊆ R is not compact. For example the set

U = { [0, r[ ⊂ R : r < π/4 } ∪ { ]s, 1] ⊂ R : s > π/4 }

is an open cover of [0, 1] by semialgebraic subsets of R and it is not possible
to extract from it a finite subcover!
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This example shows that, unlike the notion of semialgebraic connectness,
a notion of of semialgebraic compactness given just with semialgebraic open
coverings is not appropriate. Instead, we shall suffice ourselves with studying
"closed and bounded" semialgebraic sets and bounded semialgebraic func-
tions.

Definition 2.3. A function f : A→ R is bounded if ∀ a ∈ A ∃ r ∈ R with
||f(a)|| < r.

Proposition 2.4. Let r ∈ R, r > 0 and ϕ : ]0, r]→ R a continuous bounded
semialgebraic function. Then ϕ extends to a continuous function on [0, r].

For the proof we need the following lemma:

Lemma 2.5. Let A ⊆ R be a semialgebraic set and ϕ : A → R a semial-
gebraic function. Then there exists a non-zero polynomial f ∈ R[x, y] such
that f vanishes on Γ(ϕ), i.e.

∀x ∈ A f(x, ϕ(x)) = 0.

(For its proof see Lemma 1.1 of Lecture 21)

Proof of Proposition 2.4. Assuming Lemma 2.5, let f ∈ R[x, y] be a non-zero
polynomial such that f vanishes on Γ(ϕ). We shall proceed by induction on
d = deg f in y.

Suppost first d = 1. We write

f = Q1(x)y +Q0(x), Q0, Q1 ∈ R[x], Q1 6≡ 0.

We have that

f(x, ϕ(x)) = 0 ⇒ Q1(x)ϕ(x) +Q0(x) = 0 ∀x ∈ ]0, r].

We may assume that Q1(x), Q0(x) ∈ R[x] are relatively prime (otherwise
we divide by the common factor). So we get that

ϕ(x) =
−Q0(x)
Q1(x)

(we may assume that Q1(x) 6= 0 for all x ∈ ]0, r], otherwise we take an
opportune subinterval ]0, r′] ⊂ ]0, r]).

Note that Q1(x) does not have a zero at x = 0 (i.e. x does not divide
Q1(x)), otherwise by continuity

lim
x→0+

ϕ(x) = ±∞

which contradicts our assumptions that ∃M ∈ R such that |ϕ(x)| < M for
all x ∈ ]0, r]. So we can set

ϕ(0) :=
−Q0(0)
Q1(0)

and with this new definition the map

ϕ : [0, r] −→ R

is continuous.
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Let now d > 1 and assume the result to be true for degy f(x, y) < d.
Without loss of generality we may assume that f(x, y) is not divisible by x.
Otherwise, if

f(x, y) = xf1(x, y),

we have

f(x, ϕ(x)) = xf1(x, ϕ(x)) = 0 ∀x ∈ ]0, r],
therefore

f1(x, ϕ(x)) = 0 ∀x ∈ ]0, r]

and we can replace f by f1 if necessary.
Let

f ′ =
∂f

∂y
6≡ 0

and let
(Ai ; {ξij}j=1,...,li)i∈I

be a slicing of {f, f ′}. So Ai is a partition of R in intervals and points.
We may assume without loss of generality that A1 = ]0, r] and ϕ = ξ1,j0 (for
some r′ small enough, i.e. replacing r by r′ if necessary).

We have to consider two cases:

• If for x ∈ A1 ϕ(x) is also a root of f ′(x, y) (i.e. f ′ vanishes on Γ(ϕ)),
then we are done by induction hypothesis, since

degy f
′(x, y) < d.

• If not, say sign(f ′(x, ξ1j0(x))) = sign(f ′(x, ϕ(x))) > 0 for x ∈ ]0, r].

Claim: There are two continuous semialgebraic functions ρ and θ
such that ρ, θ : [0, r]→ R and

∀x ∈ ]0, r] ρ(x) < ϕ(x) < θ(x)

and sign(f ′(x, y)) is positive for all y ∈ ] ρ(x), θ(x) [ (∗).

Proof of Claim. We can take

ρ := ξ1j0−1 and θ = ξ1j0+1.

If ϕ = ξ1j0 = ξ11 then we can take ρ to be the constant function
−(M + 1), where M is the bound for ϕ.

If j0 = l1 we can take θ to be the constant function M + 1.

Note that these functions are roots of the derivative f ′, and deg f ′ <
d in y, so by induction hypothesis the continuous semialgebraic maps
ρ and θ can be extended to [0, r] since f ′ vanishes on Γ(ρ) and Γ(θ)).

�
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Now consider ρ(0) and θ(0): by continuity we have ρ(0) 6 θ(0).

- If ρ(0) = θ(0), set ϕ(0) = ρ(0). This gives a continuous extension of
ϕ to [0, r].

- Otherwise ρ(0) < θ(0). Consider the function f ′(0, y): it is non-
negative for every y ∈ [ρ(0), θ(0)] (by continuity together with (∗) of
Claim).

Now if f(0, y) is constant, it would be identically zero because we
have

f(0, ρ(0)) 6 0 6 f(0, θ(0))

but this is impossible since x is not a factor of f .
So we must have f ′(0, y) > 0 and the function f(0, y) is strictly

increasing and has a unique root y0 ∈ [ρ(0), θ(0)]. Set

ϕ(0) := y0.

It remains to show that with this definition ϕ is continuous at 0
(i.e. that limx→0+ ϕ(x) = y0).

Case 1. ρ(0) < y0 < θ(0).
Then for ε ∈ R, ε > 0 small enough, f(0, y0−ε) < 0, f(0, y0+ε) >

0, ρ(0) < y0−ε < y0 < y0+ε < θ(0). Hence there exists η ∈ R, η > 0
such that for every x ∈ ]0, η[:

f(x, y0 − ε) < 0
f(x, y0 + ε) > 0
ρ(x) < y0 − ε
y0 + ε < θ(x)

Therefore ϕ(x) ∈ ]y0 − ε, y0 + ε[ for every x ∈ ]0, η[.

Case 2. ρ(0) = y0.
We have f(0, y0 + ε) > 0 for every ε ∈ R, ε > 0 small enough.

Then there exists η ∈ R, η > 0 such that for every x ∈ ]0, η[:{
f(x, y0 + ε) > 0
y0 − ε < ρ(x) < y0 − ε

Again these imply that ϕ(x) ∈ ]y0 − ε, y0 + ε[ for every x ∈ ]0, η[.

Case 3. θ(0) = y0. Analogous.
�
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Let R be a real closed field.

1. Recall and plan

During the last lecture we proved that:

Proposition 1.1. Let ϕ : ]0, r[ → R be a continuous bounded semialgebraic
function defined on an interval ]0, r[ ⊂ R. Then ϕ can be continuously
extended to 0.

This was done assuming the following Lemma that we did not yet prove:

Lemma 1.2. Let A ⊆ R be a semialgebraic set, ϕ : A → R a semialgebraic
function. Then there exists a nonzero polynomial f ∈ R[x, y] such that for
every x ∈ A, f(x, ϕ(x)) = 0.

We shall postpone the proof of the previous Lemma to next lecture, since
we want to focus today on the proof of the Curve Selection Lemma. For this
we shall further assume Thom’s Lemma:

Proposition 1.3. (Thom’s Lemma) Let f1, . . . , fs be a family of polynomials
in R[x] closed under derivation. Let ε : {1, . . . , s} → {−1, 0, 1} be a sign
condition. Set

Aε :=
s⋂

k=1

{x ∈ R : sign(fk(x)) = ε(k)}.

Denote by Aε̄ the semialgebraic subset of R obtained by relaxing the strict
inequalities in Aε, i.e. :

Aε̄ :=
s⋂

k=1

{x ∈ R : sign(fk(x)) = ε(k)}.

where ε̄ is defined as follows:

0̄ = {0} −1 = {−1, 0} 1̄ = {0, 1}
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Then
(i) either Aε is empty, or Aε is a point, or Aε is an open interval;

(ii) if Aε is nonempty then its closure is Aε̄;
(iii) if Aε is empty then Aε̄ is either empty or a point.

Using Prop 1.1 (proved last time) and Thom’s Lemma (to be proved next
time) our goal today is to prove the following:

Theorem 1.4. (Curve Selection Lemma) Let A be a semialgebraic subset
of Rn, x ∈ Rn, x ∈ Ā = clos(A). Then there exists a continuous semialge-
braic map f : [ 0, 1 ]→ Rn such that f(0) = x and f(] 0, 1 ]) ⊂ A.

Lemma 1.5. Let f1, . . . , fs ∈ R[x1, . . . , xn; y] be quasi-monic with respect
to y (i.e. fk = adk

ydk +gdk
(x1, . . . , xn)ydk−1+· · ·+g0(x1, . . . , xn) and adk

∈ R
is constant). Assume that the set {f1, . . . , fs} is closed under derivation with
respect to y.

Let (Ai ; (ξij)j=1,...,li)i=1,...,m be a slicing of {f1, . . . , fs}. Then every
function ξij can be continuously extended to the closure of Ai.

We shall prove the CSL and Lemma 1.5 simultaneously by induction on
n in the following way. We shall show that:

(i) CSL is true for n = 1.
(ii) CSL for n implies Lemma 1.5 for n.

(iii) CSL and Lemma 1.5 for n imply CSL for n+ 1.
(Clearly once (i), (ii), (iii) are established, CSL and Lemma 1.5 will follow

by induction).

2. Proof of the Curve Selection Lemma

(i) n = 1. Let x ∈ Ā. We may assume x /∈ A (otherwise take f to be the
constant map f : [0, 1]→ Rn, f(r) = x ∀ r).

(By o-minimality) we know that A ⊂ R semialgebraic is a finite union of
intervals and points. So the result is clear in this case (if x ∈ Ā, say x is
the endpoint of a (half) open interval I of the form (x, b] ⊂ A or (x, b) ⊂ A
or [a, x) ⊂ A or (a, x), in all cases one can define continuous semialgebraic
f : [0, 1]→ I with f(0) = x).

(ii) Assume CSL holds for n. We show that Lemma 1.5 holds for n.
For fixed i, j and x ∈ Ai, we set

ε(k) := sign(fk(x, ξij(x))),

with k = 1, . . . , s. This is well-defined since sign(fk(x, ξij(x))) does not
depend on x ∈ Ai.

Let x′ ∈ clos(Ai). We show that ξij can be continuously extended to the
semialgebraic set Ai ∪ {x′}.

By CSL for n there is f : [0, 1]→ Rn countinuous and semialgebraic such
that f(0) = x′ and f(]0, 1]) ⊂ (Ai ∩ B̄n(x′, 1)) = A, where B̄n(x′, 1) is the
n-dimensional closed ball with center x′ and radius 1, i.e.

B̄n(x′, 1)) = {a ∈ Rn | ‖a− x′‖ 6 1},

which is a closed and bounded semialgebraic set.
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Define ϕ : ]0, 1]→ R, ϕ := (ξij ◦ f|]0,1]). Then ϕ is continuous and semial-
gebraic. We want to show that ϕ is bounded in order to apply Prop 1.1.

Now let k ∈ {1, . . . , s} be such that for x ∈ Ai:
ξij(x) is a root of fk(x, y),

i.e. say for x ∈ Ai, ξij(x) is a root of

fk(x, y) = adyd + gd−1(x)yd−1 + · · ·+ g0(x)

By Corollary 2.1 of Lecture 6 we have for x ∈ Ai:

|ξij(x)| 6 1 + |gd−1(x)
ad

|+ · · ·+ |g0(x)
ad
|

Consider now x in the bounded set Ai ∩ B̄n(x′, 1)).

Each polynomial g0, . . . , gd−1 is bounded on this set.

So let a ∈ R be such that for every x ∈ Ai ∩ B̄n(x′, 1)) we have

|gl(x)| 6 a ∀ l = 0, . . . , d− 1.

Therefore ϕ is a bounded function. Indeed let t ∈ ]0, 1[ and compute

|ϕ(t)| = |ξij(f(t))| with x = f(t) ∈ Ai ∩ B̄n(x′, 1))

so

|ξij(f(t))| 6 1+|gd−1(f(t))|+· · ·+|g0(f(t))| 6 1+
a

|ad|
+· · ·+ a

|ad|
= 1+

da

|ad|
.

We apply Proposition 1.1 to the bounded continuous semialgebraic func-
tion ϕ to extend ϕ continuously to 0 and we define now

ξij(x′) := ϕ(0).

Claim. ξij is continuous at x′.
We argue by contradiction. If not ∃µ > 0, µ ∈ R such that

∀ η ∈ R ∃x ∈ Ai such that ‖x− x′‖ < η but |ξij(x)− ϕ(0)| > µ.

Consider

Cµ = {x ∈ Ai | |ξij(x)− ϕ(0)| > µ} ∩ B̄n(x′, 1)

Since x′ ∈ clos(Cµ) ⊂ Rn, we can apply CSL to have a continuous semi-
algebraic function

g : [0, 1] −→ Rn

with g(0) = x′ and g(]0, 1]) ⊂ Cµ. We now consider

ψ : ]0, 1]→ R, ψ := (ξij ◦ g|]0,1]).

As before ψ can be continuously extended to 0.
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Subclaim.

(•) |ϕ(0)− ψ(0)| > µ.

(••) For every k = 1, . . . , s

sign fk(x′, ϕ(0)) ∈ ε(k)

sign fk(x′, ψ(0)) ∈ ε(k).

Proof of the Subclaim.

(•) For every t ∈ ]0, 1], ψ(t) = ξij(g(t)) = ξij(x) for some x ∈ Cµ.
Therefore |ϕ(t) − ψ(0)| > µ for every t ∈ ]0, 1] and by continuity of
ψ, |ϕ(0)− ψ(0)| > µ.

(••) Let k ∈ {1, . . . , s}.

If ε(k) = 0, then fk(x, ξij(x)) = 0 for all x ∈ Ai, so by continuity
fk(x′, ϕ(0)) = 0 and

fk(x′, ψ(0)) = 0.

Similarly if ε(k) = −1, then fk(x, ξij(x)) < 0 for all x ∈ Ai, so by
continuity

fk(x′, ϕ(0)) > 0 and

fk(x′, ψ(0)) > 0.

and finally if ε(k) = 1, then fk(x, ξij(x)) > 0 for all x ∈ Ai and
fk(x′, ϕ(0)) > 0 and

fk(x′, ψ(0)) > 0.
�

Consider now the set

{y ∈ R | sign(fk(x′, y)) ∈ ε̄(k), k = 1, . . . , s}.

By Thom’s Lemma this set is either empty or reduces to a point. On
the other hand ϕ(0) 6= ψ(0) and bot ϕ(0), ψ(0) belong to this set by the
subclaim, contradiction. Therefore ξij is continuous at x′.

(iii) We assume CSL and Lemma 1.5 to be true for n and show that CSL
is true for n+ 1.
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Let A ⊆ Rn+1 semialgebraic given by a boolean combination of sign con-
ditions on f1, . . . , fs ∈ R[x1, . . . , xn, y].

Claim. We may assume that f1, . . . , fs are quasi-monic and that the family
is closed under derivation, so that f1, . . . , fs satisfy the conditions of Lemma
1.5.

Let (Ai ; {ξij}j=1,...,li)i=1,...m be a slicing of f1, . . . , fs. So Ai ⊂ Rn for
every i = 1, . . . ,m and the set A is the union of the graphs of some functions
ξij and some slices ]ξij , ξij+1[.

Let (x, y) ∈ clos(A) ⊆ Rn+1. We have to consider the following cases:

(1) (x, y) ∈ clos(Γ(ξij)), ξij : Ai → R.

(2) (x, y) ∈ clos( ]ξij , ξij+1[ ), where 1 < j < li.

(3) (x, y) ∈ clos( ]ξij , ξij+1[ ), where j = 1 or j = li.

Case 1. Let (x, y) ∈ clos(Γ(ξij)), ξij : Ai → R, with Γ(ξij) ⊆ A. Applying
the CSL, let ϕ : [0, 1]→ Rn be a continuous and semialgebraic map such that
ϕ(0) = x and ϕ(]0, 1]) ⊆ Ai.

We can use Lemma 1.5 for n to extend ξij at x continuously. So we must
have ξij(x) = y.

Now set

ψ : [0, 1]
ϕ−→ Ai ∪ {x}

ξij−→ R

and f := (ϕ,ψ). f is continuous semialgebraic, f(0) = (ϕ(0), ψ(0)) =
(x, y) and f(]0, 1]) ⊆ A.

Case 2. (x, y) ∈ clos( ]ξij , ξij+1[ ), where 1 < j < li, with ]ξij , ξij+1[ ⊆
A ⊆ Rn+1, ξij , ξij+1 : Ai → R.

By CSL for n let ϕ : [0, 1]→ Rn be a continuous semialgebraic map with
ϕ(0) = x and ϕ(]0, 1]) ⊆ Ai.

By Lemma 1.5 for n extend the function ξij and ξij+1 continuously to x:

ξij : Ai ∪ {x} −→ R ξij(x) ∈ R
ξij+1 : Ai ∪ {x} −→ R ξij+1(x) ∈ R

Set

t :=


1/2 if ξij(x) = ξij+1(x)

y−ξij(x)
ξij+1(x)−ξij(x) if ξij(x) 6= ξij+1(x)
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and ψ : [(1 − t)ξij + t(ξij+1)] ◦ ϕ. Then ψ is continuous semialgebraic
and ψ(0) = y. Set f := (ϕ,ψ). f is continuous and semialgebraic, with
f(0) = (ϕ(0), ψ(0)) = (x, y) and f(]0, 1]) ⊆ A.

Case 3. Exercise.
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Let R be a real closed field.

1. Thom’s Lemma

Lemma 1.1. Let A ⊂ R be a semialgebraic set and ϕ : A → R a semialge-
braic function. Then exists f ∈ R[x, y], f 6= 0, such that

∀x ∈ A f(x, ϕ(x)) = 0 (f vanishes on the graph of ϕ).

Proof. The graph of ϕ Γ(ϕ) = {(x, ϕ(x)) : x ∈ A} ⊂ R2 is a semialgebraic
set, so it is a finite union of sets of the form

{(x, y) ∈ R2 : fi(x, y) = 0, i = 1, . . . , l gj(x, y) > 0, j = 1, . . . ,m}

with at least one among the fi 6= 0, otherwise Γ(ϕ) would contain an open
subset of R2, contradiction.

Now take f to be the product of these nonzero polynomials. �

Proposition 1.2. (Thom’s Lemma) Let {f1, . . . , fs} be a family of non-zero
polynomials in R[X] closed under derivation. Let ε : {1, . . . , s} → {−1, 0, 1}
be a sign function. Set

Aε := {x ∈ R : sign(fk(x)) = ε(k), k = 1, . . . , s}.

Denote by Aε̄ the semialgebraic subset of R obtained by relaxing the strict
inequalities in Aε, i.e. :

Aε̄ :=
s⋂

k=1

{x ∈ R : sign(fk(x)) ∈ ε̄(k)}.

where ε̄ is defined as follows:

0̄ = {0} − 1̄ = {−1, 0} 1̄ = {0, 1}.

Then
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(i) either Aε is empty, or Aε is a point, or Aε is a non-empty open in-
terval (if Aε is empty or a point, then ε(k) = 0 for some k; if Aε is
a non-empty open interval then ε(k) = ±1 for every k);

(ii) if Aε is non-empty then its closure is Aε̄ (which is either a point or a
closed interval different from a point and the interior of this interval
is Aε);

(iii) if Aε is empty then Aε̄ is either empty or a point.

Proof. By induction on s. The Lemma holds trivially for s = 0. Let
f1, . . . , fs, fs+1 ∈ R[x] \ {0} be polynomials such that if f ′k 6= 0, then
f ′k ∈ {f1, . . . , fs+1}. Without loss of generality we assume that deg(fs+1) =
max{deg(fk) : 1 6 k 6 s+ 1}.

Let ε′ : {1, . . . , s, s + 1} → {−1, 0, 1} and ε : {1, . . . , s, } → {−1, 0, 1} the
restriction.

Note that

Aε′ = Aε ∩ {x ∈ R : sign(fs+1(x)) = ε′(s+ 1)}.

By induction Aε is empty, a point, or an interval.
If Aε is empty or a point, then obviously so is Aε′ and the other property

follows immediately by induction hypothesis on Aε.
Assume Aε is an interval. Now f ′s+1 = 0 or f ′s+1 ∈ {f1, . . . , fs}. So by def-

inition of Aε, f ′s+1 has constant sign on Aε. Therefore fs+1 is either strictly
increasing, or strictly decreasing or constant on Aε.

Consider Aε = (a, b) There are three cases depending on ε′(s+ 1):

Case 1. Aε′ = {x ∈ (a, b) : fs+1(x) > 0}.
Case 2. Aε′ = {x ∈ (a, b) : fs+1(x) < 0}.
Case 3. Aε′ = {x ∈ (a, b) : fs+1(x) = 0}.

If Aε′ = ∅ there is nothing to prove.
Assume Aε′ 6= ∅. If fs+1 is constant on Aε then fs+1 is a constant polyno-

mial fs+1(x) = c 6= 0. So Aε′ is empty or Aε′ = (a, b) depending on whether
sign(c) = ε′(s+ 1).

Assume now fs+1 strictly increasing on Aε and Aε′ = {x ∈ (a, b) :
fs+1(x) > 0} 6= ∅. Let x0 = inf{x ∈ (a, b) : fs+1(x) > 0}. Since fs+1

is strictly increasing it follows that fs+1(x) > 0 ∀x ∈ (a, b) with x > x0.
So Aε′ = (x0, b) and its closure is [x0, b] = Aε̄′ . The other cases are treated
similarly. �

2. Semialgebraic path connectedness

Definition 2.1. Let A ⊆ Rn be a semialgebraic set.
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(1) A semialgebraic path in A is a continuous semialgebraic map

α : I −→ A,

where I is either [0, 1] or ]0, 1[.

(2) Let x, y ∈ A. We say that x is semialgebraic path connected to y if
there exists a semialgebraic path in A

α : [0, 1] −→ A

with α(0) = x and α(1) = y.

Remark 2.2. Note that "x is semialgebraic path connected to y" is
an equivalence relation on A:

To see simmetry observe that if α is a path from x to y then

α∗(t) := α(1− t)
defines a path from y to x.
To see transitivity observe that if α is a path from x to y and β is

a path from y to z, then

γ(t) :=

{
α(2t) 0 6 t 6 1/2
β(2t− 1) 1/2 6 t 6 1

is a path from x to z.

(3) A is semialgebraic path connected if any two points in A are
semialgebraic path connected.

Proposition 2.3. Let A be a semialgebraic set. Then

A is semialgebraic connected ⇐⇒ A is semialgebraic path connected.

Proof.
(⇒) Suppose A is a semialgebraic connected set and let

A =
n⋃

i=1

Ci

a semialgebraic cell decomposition of A (so each Ci is semialgebraic
path connected). Then we have seen that there is an equivalence
relation on {Ci : i = 1, . . . , n} given by:

Ci ∼ Cj ⇔ ∃ Ci0 , . . . , Ciq such that Ci0 = Ci, Ciq = Cj and

Cik ∩ C̄ik+1
6= ∅ or C̄ik ∩ Cik+1

6= ∅ ∀ 0 6 k < q,

such that the equivalence classes with respect to this equivalence re-
lation are the semialgebraic connected component of S. Since A is
semialgebraic connected there is only one equivalence class.

Claim 1. If C is a semialgebraic path connected set, also the
closure C̄ of C is semialgebraic path connected (it is an immediate

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 87



4 SALMA KUHLMANN

consequence of the Curve Selection Lemma).

Claim 2. If A1, A2 ⊆ Rn are semialgebraic path connected with
A1 ∩A2 6= ∅, then A1 ∪A2 is semialgebraic path connected.

So let x, y ∈ A. We want to find a semialgebraic path in A joining
x and y. Let x ∈ Ci and y ∈ Cj and Ci0 , . . . , Ciq as above. For every
0 6 k < q, let ak ∈ Cik ∩ C̄ik+1

or ak ∈ C̄ik ∩ Cik+1
. By Claim 1

and Claim 2 we can find semialgebraic paths joining ak with ak+1

for every 0 6 k < q and conclude joining x with a0 (since Ci = Ci0

is semialgebraic path connected) and aq−1 with y (since Cj = Ciq is
semialgebraic path connected).

(⇐) Claim. If A is path connected then A is connected.

Suppose for a contradiction that A is a disjoint union of non-empty
open sets A1 and A2. Take x ∈ A1, y ∈ A2 and ϕ : [0, 1] → A a
continuous function such that ϕ(x) = 0 and ϕ(y) = y (it exists
because A is path connected).

Now consider X1 := [0, 1] ∩ ϕ−1(A1) and X2 := [0, 1] ∩ ϕ−1(A2).
Then X1 and X2 disconnect [0, 1], contradiction.

So we have:

A semialg. path conn.⇒ A path conn. ⇒ A conn. ⇒ A semialg. conn.

�

The semialgebraic assumption is essential to prove (⇒), as the following
example shows:

Example 2.4. Let Γ = {(x, sin(1/x) : x > 0} ⊂ R2 and consider A =
{(0, 0)} ∪ Γ. Note that (0, 0) is in the closure Γ̄ of Γ. Then A is connected
but it is not path connected: there is no continuous function inside A joining
{(0, 0)} with a point of Γ.

3. Semialgebraic compactness

Definition 3.1. A semialgebraic set A ⊂ Rn is semialgebraic compact if
for every semialgebraic path α : ]0, 1[−→ A,

∃ lim
t→0+

α(t) ∈ A.

Theorem 3.2. Let A ⊆ Rn be a semialgebraic set. Then

A is semialgebraic compact ⇐⇒ A is closed and bounded.

Proof.
(⇐) Let A ⊆ Rn be closed and bounded and α : ]0, 1[→ A a semialgebraic

path.
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Since A is bounded, α can be continuously extended to 0, so

∃ lim
t→0+

α(t) = x ∈ Rn

and x = α(0).
But A is closed, then α(0) ∈ A.

(⇒) Assume A is semialgebraic compact and suppose for a contradiction
that A is not closed.

Let x ∈ Ā, x /∈ A. By the Curve Selection Lemma there is a semi-
algebraic continuous function f : [0, 1]→ Rn such that f(]0, 1]) ⊂ A
and f(0) = x. Therefore

x = lim
t→0+

f(t),

and x ∈ A, since A is semialgebraic compact. Contradiction.
To show that A is bounded we use the following corollary to the

Curve Selection Lemma:

Corollary 3.3. Let A ⊆ Rn be an unbounded semialgebraic set.
Then there is a semialgebraic path α : ]0, 1[→ A with

lim
t→0
|α(t)| =∞.

�

The following Theorem and its Corollory is a particular indication that
the notion of "semialgebraic compactness" is the correct analogue to usual
compactness, adapted to the semialgebraic setting:

Theorem 3.4. Let A,B semialgebraic sets and f : A → B a semialgebraic
continuous map. Then

A semialgebraic compact ⇒ f(A) semialgebraic compact .

Proof. We assume the following Lemma:

Lemma 3.5. Let f : A→ B be a semialgebraic map with A, B semialgebraic
sets. Let β : ]0, 1[→ B be a semialgebraic path in B with β(]0, 1[) ⊆ f(A).
Then there is 0 < c 6 1 and a semialgebraic continuous function α : ]0, c[→ A
such that β(t) = f(α(t)) for every 0 < t < c.

Let β : ]0, 1[ → f(A) be a semialgebraic path. We want to show that

∃ lim
t→0+

β(t) ∈ f(A).

By Lemma 3.5, there is 0 < c 6 1 and a semialgebraic continuous function
α : ]0, c[ → A such that β(t) = f(α(t)) for every 0 < t < c. Since A is
semialgebraic compact

∃ lim
t→0+

α(t) = x ∈ A.

So limt→0+ β(t) = f(x) ∈ f(A), as required. �

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 89



6 SALMA KUHLMANN

Corollary 3.6. If A is a semialgebraic compact set then any semialgebraic
continuous function f : A→ R takes maximum and minimum.

Proof. By Thereom above f(A) is semialgebraic compact, so by 3.2 it is
closed and bounded. So f(A) is a union of finitely many intervals [ai, bi]
(with ai 6 bi ∈ R). �
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Let R be a real closed field.

1. Semialgebraic dimension

Theorem 1.1. Let S ⊂ Rn be a semialgebraic set and T1, . . . , Tq finitely
many semialgebraic subsets of S. Then

S =
⋃̇

k=1,...,r

Σk, where

(i) every Σk is semialgebraic homeomorphic to an open hypercube (0, 1)dk ;

(ii) the closure of Σk in S is the union of Σk and some Σj with j 6= k
and dj < dk;

(iii) the closure Σ̄k of Σk is the union of Σk and finitely many semi-
algebraic sets Si semialgebraic homeomorphic to an open hypercube
(0, 1)di, with di < dk;

(iv) every Ti is the union of some Σk.

Such a decomposition S =
⋃
k Σk is said to be a stratification of S and the

Σ1, . . . ,Σr are called strata.

Proposition 1.2. Let S ⊂ Rn be a semialgebraic set. Let

S =
p⋃
i=1

Ci S =
q⋃
j=1

Dj

be two decompositions of S into a disjoint union of semialgebraic sets, with

Ci semialgebraic isomorphic to (0, 1)di ∀ i = 1, . . . , p,

Dj semialgebraic isomorphic to (0, 1)dj ∀ j = 1, . . . , q.

Then maxi=1,...,p{di} = maxj=1,...,q{dj} = d.
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We define the dimension of S such a d. We write dimS = d.

Proof. We can apply Theorem 1.1 taking the semialgebraic subsets Tij =
Ci ∩Dj , for i = 1, . . . , p and j = 1, . . . , q, and we find a stratification

S =
r⋃

k=1

Σk

which is a common refinement of the two decomposition, i.e. each Ci and
each Dj is a finite union of some Σk and each Σk is semialgebraic homeo-
morphic to (0, 1)dk .

We want to show that maxi=1,...,p{di} = maxj=1,...,q{dj} = maxk=1,...,r{dk}.

Set d̄i := maxi=1,...,p{di} and d̄k := maxk=1,...,r{dk}.
Since every Σk is contained in some Ci, of course d̄k 6 d̄i.

Let now Σk a stratum semialgebraic homeomorphic to (0, 1)d̄k and suppose
that Σk ⊂ Ci. We claim that Σk is open in Ci (equivalently, Ci \ Σk is closed
in Ci): by Theorem 1.1(ii), if Σs is a stratum in Ci \ Σk then the closure
of Σs in Ci contains only Σs and strata Σa with da < ds 6 d̄k. Therefore
the closure of Ci \ Σk in Ci is disjoint from Σk and this shows that Ci \ Σk

is closed in Ci (and Σk is open in Ci). We conclude assuming the following
fact:

Fact 1.3.
• A ⊂ X, X homeomorphic to (0, 1)d, A open in X ⇒ A locally
homeomorphic to (0, 1)d (i.e. for every x ∈ A there is an open neigh-
borhood of x homeomorphic to (0, 1)d).

• (0, 1)d1 is homeomorphic to (0, 1)d2 ⇔ d1 = d2.

Therefore d̄k = d̄i, and d̄k = d̄j is similar. �

Remark 1.4. Let A, B ⊂ Rn be semialgebraic sets. Then

(1) dim(A ∪B) = max{dimA,dimB}.

(2) dim(A×B) = dimA+ dimB.

We see now that the dimension of a semialgebraic set behaves well with
respect to the topological closure:

Proposition 1.5. Let S ⊂ Rn be semialgebraic. Then

(i) dim S̄ = dimS.

(ii) dim(S̄ \ S) < dimS.

Proof. Let us observe that by 1.4(1), (ii) ⇒ (i).
We claim that if

S =
⋃̇

k=1,...,r

Σk

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 92



REAL ALGEBRAIC GEOMETRY LECTURE NOTES (22: 14/01/10) 3

is a stratification of S as in Theorem 1.1, then

S̄ =
r⋃

k=1

Σ̄k :

(⊆)
⋃r
k=1 Σ̄k is a finite union of closed set, so it is closed. It contains S,

so it contains also the closure S̄ of S.

(⊇) For every k = 1, . . . , r, Σk ⊆ S. Then Σ̄k ⊆ S̄ and
⋃r
k=1 Σ̄k ⊆ S̄.

Therefore dim(S̄ \ S) 6 max{dim(Σ̄k\ Σk) : 1 6 k 6 r} and by Theorem
1.1(iii) this is stricly less than max{dim Σk : 1 6 k 6 r} = dimS. �

Now we see that the dimension of a semialgebraic set is invariant by semi-
algebraic bijections (not necessarily continuous!):

Lemma 1.6. Let A ⊂ Rn+k be a semialgebraic set, π : Rn+k → Rn the
projection on the first n coordinates. Then dimπ(A) 6 dimA. Moreover if
π|A : A→ Rn is injective, then dimπ(A) = dimA.

Proof. By induction on k.
• k = 1. Write A as a disjoint union of cells.

• k ⇒ k + 1. Consider the projection π : Rn+k+1 → Rn on the first n
coordinates as the composition of the projection π1 : Rn+k+1 → Rn+1

on the first n+ 1 coordinates and the projection π2 : Rn+1 → Rn on
the first n coordinates:

Rn+1+k

π

##π1 // Rn+1
π2 // Rn

A 7→ A1 7→ π(A)

Then by induction dimA > dimπ1(A) = A1 > dimπ2(A1) = π(A).

Moreover

π|A is injective ⇐⇒ π1|A and π2|A1
are injective.

�

Theorem 1.7. Let S ⊂ Rn be semialgebraic, f : S → Rk a semialgebraic
map (not necessarily continuous). Then dim f(S) 6 dimS. If f is injective
then dim f(S) = dimS.

Proof. Let A ⊂ Rn+k be the graph of f :

A = Γ(f) = {(x, f(x)) : x ∈ S}.

Let π1 : Rn+k → Rn be the projection on the first n coordinates. Then π1|A
is injective and π1(A) = S. Therefore, by Lemma 1.6, dimS = dimA.

Let now π2 : Rn+k → Rk be the projection on the last k coordinates. Then
π2(A) = f(S). Again by Lemma 1.6 dim f(S) 6 dimA = dimS.

If f is injective then dim f(S) = dimA. �
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2. Algebraic dimension

Consider the ring of polynomials R[x] := R[x1, . . . , xn] in n variables and
coefficients in R.

An algebraic set V ⊂ Rn is by definition the common zeroset of all poly-
nomials belonging to a subset A ⊂ R[x]:

V = Z(A) := {x ∈ Rn : p(x) = 0 ∀ p ∈ A}.

Then we can consider the set of polynomials which vanish on V (which of
course contains A):

I(V ) := {p ∈ R[x] : p(x) = 0 ∀x ∈ V }.

We take the ring of polynomal functions on V , i.e. the quotient of R[x] by
I(V ):

P(V ) :=
R[x]
I(V )

.

And now we are ready to define the algebraic dimension of V :

Definition 2.1. The dimension of an algebraic set V is by definition the
Krull dimension of P(V ), i.e. the maximal d ∈ N such that

∃ P0 ( P1 ( · · · ( Pd,

where Pi is a prime ideal of P(V ) ∀ i = 1, . . . , d.
We recall that an ideal P is said to be prime if for every pair of ideals A

and B,
AB ⊂ P ⇒ A ⊂ P or B ⊂ P.

In general, given a subset S ⊂ Rn, Z(I(S)) is the smallest algebraic
subset of Rn containing S. It is said to be the Zariski closure of S and it
is denoted by S̄Z .

In fact, the algebraic subsets of Rn are the closed sets of the Zariski
topology, and S̄Z is the closure of S with respect to this topology.

The Zariski topology is coarser than the Euclidean topology, i.e. each
algebraic set is closed in the Euclidean topology, but the converse is not
true.

Theorem 2.2. Let S ⊂ Rn be a semialgebraic set. Then its dimension as a
semialgebraic set is equal to the dimension, as an algebraic set, of its Zariski
closure S̄Z . In particular, if V ⊂ Rn is an algebraic set, then its dimension
as a semialgebraic set is equal to its dimension as an algebraic set (i.e. the
Krull dimension of P(V )).

Dimension will be investigated more during next term.
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PART III
Konvexe Bewertungen und reelle Stellen auf angeordnete Körper

1. Valued Z-modules and valued Q-vector spaces

All modules M considered are left Z-modules for a fixed ring Z with 1
(we are mainly interested in Z = Z, i.e. in valued abelian groups).

Definition 1.1. Let Γ be a totally ordered set and ∞ an element greater
than aech element of Γ (Notation: ∞ > Γ). A surjective map

v : M −→ Γ ∪ {∞}

is a valuation on M (and (M,v) is a valued module) if ∀x, y ∈ M and
∀ r ∈ Z:

(i) v(x) =∞ ⇔ x = 0;

(ii) v(rx) = v(x), if r 6= 0 (value preserving scalar multiplication);

(iii) v(x− y) > min{v(x), v(y)} (ultrametric ∆-inequality).

Remark 1.2. (i) + (ii) ⇒ M is torsion-free.

Remark 1.3. Consequences of the ultrametric:

• v(x) 6= v(y) ⇒ v(x+ y) = min{v(x), v(y)};

• v(x+ y) > v(x) ⇒ v(x) = v(y).

Definition 1.4. v(M) := Γ = {v(x) : 0 6= x ∈M} is the value set of M .
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Definition 1.5.
(i) Let (M1, v1), (M2, v2) two valued modules with value sets Γ1 and Γ2

respectively. Let
h : M1 −→ M2

be an isomorphism of Z-modules. We say that h preserves the
valuation if there is an isomorphism of ordered sets

ϕ : Γ1 −→ Γ2

such that ∀x ∈M1 : ϕ(v1(x)) = v2(h(x)).

(ii) Two valuations v1, v2 on M are equivalent if the identity map on
M preserves the valuation.

Definition 1.6.
(1) An ordered system of Z-modules is denoted by:

[ Γ, {B(γ) : γ ∈ Γ} ]

where {B(γ) : γ ∈ Γ} is a family of modules indexed by a totally
ordered set Γ.

(2) Two systems

Si = [ Γi, {Bi(γ) : γ ∈ Γi} ] i = 1, 2

are isomorphic (we write S1
∼= S2) if and only if there are an iso-

morphism
ϕ : Γ1 −→ Γ2

of totally ordered sets, and ∀ γ ∈ Γ1 an isomorphism of modules

ϕγ : B1(γ) −→ B2(ϕ(γ)).

(3) Let (M,v) be a valued module, Γ := v(M). For γ ∈ Γ set

Mγ := {x ∈M : v(x) > γ}

Mγ := {x ∈M : v(x) > γ}.

Then Mγ ( Mγ ( M . Set

B(M,γ) := Mγ/Mγ .

B(M,γ) is the (homogeneous) component corresponding to
γ. The skeleton (das skelett) of the valued module (M, v) is the
ordered system

S(M) := [ v(M), {B(M,γ) : γ ∈ v(M)} ].

We write B(γ) for B(M,γ) if the context is clear.
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(4) For every γ ∈ Γ, the coefficient map (Koeffizient Abbildung)

πM (γ,−) : Mγ −→ B(γ)
x 7→ x+Mγ

is the canonical projection.
We write π(γ,−) instead of πM (γ,−) if the context is clear.

Lemma 1.7. The skeleton is an isomorphism invariant, i.e.

if (M1, v1) ∼= (M2, v2),

then S(M1) ∼= S(M2).

Proof. Let h : M1 → M2 be an isomorphism which preserves the valuation.
Then

h̃ : v(M1) −→ v(M2)

defined by
h̃(v1(x)) := v2(h(x))

is a well defined map and an isomorphism of totally ordered sets.
For γ ∈ v(M1) the map

hγ : B1(γ) −→ B2(h̃(γ))

defined by

πM1(γ, x) 7→ πM2(h̃(γ), h(x))

is well defined and an isomorphism of modules. �

2. Hahn valued modules

A system [ Γ, {B(γ) : γ ∈ Γ} ] of torsion-free modules can be realized as
the skeleton of a valued module through the following canonical construction:

Consider
∏
γ∈ΓB(γ) the product module. For s ∈

∏
γ∈ΓB(γ) define

support(s) = {γ ∈ Γ : s(γ) 6= 0}.

The Hahn sum
⊔
γ∈ΓB(γ) is the submodule of

∏
γ∈ΓB(γ) consisting of

elements with finite support (i.e.
⊕

γ∈ΓB) endowed with the valuation:

vmin :
⊔
γ∈Γ

B(γ) −→ Γ ∪ {∞}

vmin(s) = min support(s).

(convention: min ∅ =∞).
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TheHann product Hγ∈ΓB(γ) is the submodule of
∏
γ∈ΓB(γ) consisting

of the elements with well-ordered support equipped with vmin.

We recall that a totally ordered set Γ is well-ordered if every non-empty
subset of Γ has a least, or equivalently if every descending sequence of ele-
ments from Γ is finite.

3. Hahn Sandwich Proposition

Lemma 3.1.
(i)

⊔
γ∈ΓB(γ)) ⊆ Hγ∈ΓB(γ).

(ii)

S(
⊔
γ∈Γ

B(γ)) ∼= [ Γ, {B(γ) : γ ∈ Γ} ]

∼= S(Hγ∈ΓB(γ)).

We shall show that if Z = Q is a field and (V, v) is a valued Q-vector
space with skeleton S(V ) = [ Γ, B(γ) ], then

(
⊔
B(γ), vmin) ↪→ (V, v) ↪→ (Hγ∈ΓB(γ), vmin).
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1. Hahn Sandwich Proposition

From now, let Z = Q be a field and (V, v) a valued Q-vector space with
skeleton S(V ) = [ Γ, B(γ) ]. We want to show

(
⊔
γ∈Γ

B(γ), vmin) ↪→ (V, v) ↪→ (Hγ∈ΓB(γ), vmin).

2. Immediate extensions

Definition 2.1. Let (Vi, vi) be valued Q-vector spaces (i = 1, 2).

(1) Let V1 ⊆ V2 Q-subspace with v1(V1) ⊆ v2(V2). We say that (V2, v2)
is an extension of (V1, v1), and we write

(V1, v1) ⊆ (V2, v2),

if v2|V1 = v1.

(2) If (V1, v1) ⊆ (V2, v2), for γ ∈ v1(V1) the map

B1(γ) −→ B2(γ)

x+ (V1)γ 7→ x+ (V2)γ

is a natural identification of B1(γ) as a Q-subspace of B2(γ). The
extension (V1, v1) ⊆ (V2, v2) is immediate if Γ := v1(V1) = v2(V2)
and ∀ γ ∈ v1(V1)

B1(γ) = B2(γ).

Equivalently, (V1, v1) ⊆ (V2, v2) is immediate if S(V1, v1) = S(V2, v2).
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Lemma 2.2. (Characterization of immediate extensions)
The extension (V1, v1) ⊆ (V2, v2) is immediate if and only if

∀x ∈ V2, x 6= 0, ∃ y ∈ V1 such that v2(x− y) > v2(x).

Proof. We show that in a valued Q-vector space (V, v), for every x, y ∈ V

v(x− y) > v(x) ⇐⇒

{
(i) γ = v(x) = v(y) and
(ii) π(γ, x) = π(γ, y).

(⇐) Assume (i) and (ii). So x, y ∈ V γ and x− y ∈ Vγ .
Then v(x− y) > v(x) = γ.

(⇒) Assume v(x− y) > v(x). We show (i) and (ii).
If v(x) 6= v(y), then v(x − y) = min{v(x), v(y)}. In both cases

min{v(x), v(y)} = v(x) and min{v(x), v(y)} = v(y) we have a con-
tradiction. (ii) is analogue.

�

Example 2.3. (
⊔
γ∈ΓB(γ), vmin) ⊆ (Hγ∈ΓB(γ), vmin)

is an immediate extension.

Proof. Given x ∈ Hγ∈ΓB(γ), x 6= 0, set

γ0 := min support(x) and x(γ0) := b0 ∈ B(γ0).

Let y ∈
⊔
γ∈ΓB(γ) such that

y(γ) =

{
0 if γ 6= γ0

b0 if γ = γ0.

Namely y = b0χγ0 , where
χγ0 : Γ −→ Q

χγ0(γ) =

{
1 if γ = γ0

0 if γ 6= γ0.

Then vmin(x − y) > γ0 = vmin(x) (because (x − y)(γ0) = x(γ0) − y(γ0) =
b0 − b0 = 0).

�

3. Valuation independence

Definition 3.1. B = {xi : i ∈ I} ⊆ V \ {0} is Q-valuation independent
if for qi ∈ Q with qi = 0 for all but finitely many i ∈ I, we have

v(
∑
i∈I

qixi) = min
i∈I,qi 6=0

{v(xi)}.

Remark 3.2. B ⊆ V \{0} Q-valuation independent ⇒ Q-linear indepen-
dent.

(Otherwise ∃ qi 6= 0 with
∑
qixi = 0 and v(

∑
qixi) =∞).

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 100



REAL ALGEBRAIC GEOMETRY LECTURE NOTES (24: 21/01/10) 3

Proposition 3.3. (Characterization of valuation independence)
Let B ⊆ V \ {0}. Then B is Q-valuation independent if and only if

∀n ∈ N, ∀ b1, . . . , bn ∈ B pairwise distinct with v(b1) = · · · = v(bn) = γ, the
coefficients

π(γ, b1), . . . , π(γ, bn) ∈ B(γ)

are Q-linear independent in B(γ).

Proof.
(⇒) Let b1, . . . , bn ∈ B with v(b1) = · · · = v(bn) = γ and suppose for a

contradiction that

π(γ, b1), . . . , π(γ, bn) ∈ B(γ)

are not Q-linear independent. So there are q1, . . . , qn ∈ Q non-zero
such that π(γ,

∑
qibi) = 0 and v(

∑
qibi) > γ, contradiction.

(⇐) We show that

v(
∑

qibi) = min{v(bi)} = γ.

Since π(γ, b1), . . . , π(γ, bn) are Q-linear independent in B(γ), also

π(γ,

n∑
i=0

qibi) 6= 0,

i.e. v(
∑
qibi) 6 γ.

On the other hand v(
∑
qibi) > γ, so v(

∑
qibi) = γ = min{v(bi)}.

�

4. Maximal valuation independence

By Zorn’s lemma, maximal valuation independent sets exist:

Corollary 4.1. (Characterization of maximal valuation independent sets)
B ⊆ V \ {0} is maximal valuation independent if and only if ∀ γ ∈ v(V )

Bγ := {π(γ, b) : b ∈ B; v(b) = γ}

is a Q-vector space basis of B(V, γ).

Corollary 4.2. Let B ⊆ V \ {0} be valuation independent in (V, v). Then
B is maximal valuation independent if and only if the extension

〈 B 〉 := (V0, v|V0) ⊆ (V, v)

is an immediate extension.

Proof.
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(⇒) Assume B ⊆ V is maximal valuation independent. We show V0 ⊆ V
is immediate.

If not ∃ x ∈ V , x 6= 0 such that

∀ y ∈ V0 : v(x− y) 6 v(x).

We will show that in this case B∪{x} is valuation independent (which
will contradict our maximality assumption).

Consider v(y0 + qx), q ∈ Q, q 6= 0, y0 ∈ V0. Set

y := −y0/q.

We claim that v(y0 + qx) = v(x− y) = min{v(x), v(y)}
Fact.

v(x− y) 6 v(x) ⇐⇒ v(x− y) = min{v(x), v(y)}.
Proof of the fact. (⇐) is clear. To see (⇒), assume that v(x−y) >

min{v(x), v(y)}. If min{v(x), v(y)} = v(x), then we have a contra-
diction. If min{v(x), v(y)} = v(y) < v(x), then v(x − y) = v(y) >
v(y), again a contradiction.

(⇐) Now assume (V0, v) ⊆ (V, v) is immediate. We show that B is maxi-
mal valuation independent.

If not, there is γ ∈ v(V ) such that Bγ is not a basis for B(V, γ).
Let b ∈ B(V, γ), b /∈ 〈Bγ〉.

b ∈ V γ/Vγ =⇒ b = x+ Vγ ,

with x ∈ V , v(x) = γ.
Claim: ∀ y ∈ V0 v(x − y) 6 v(x) (contradicting that the exten-

sion is immediate). This follows by Characterization of immediate
extensions (Lemma 2.2).

�

5. Valuation basis

Definition 5.1. B is a Q-valuation basis of (V, v) if
(1) B is a Q-basis,
(2) B is Q-valuation independent.

Remark 5.2. B Q-valuation basis ⇒ B is maximal valuation independent.

Example 5.3. (
⊔
γ∈ΓB(γ), vmin) admits a valuation basis.

Proof. Let Bγ be a Q-basis of B(γ) for γ ∈ Γ and consider

B :=
⋃
γ∈Γ

{bχ{γ}; b ∈ Bγ},

where ∀ γ ∈ Γ
χγ : Γ −→ Q
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χγ(γ′) =

{
1 if γ = γ′

0 if γ 6= γ′.

�

Corollary 5.4. (V, v) with skeleton S(V ) = [ Γ, B(γ) ] admits a valuation
basis if and only if

(V, v) ∼= (
⊔
γ∈Γ

B(γ), vmin).

Proof.
(⇐) Clear.

(⇒) Let B be a valuation basis for (V, v). Then B = {bi : i ∈ I} is
maximal valuation independent. For every bi ∈ B, v(bi) = γ, define

h(bi) = π(γ, bi)χγ

and extend it to V by linearity (note that v(bi) = vmin(h(bi))).
�

Corollary 5.5. Assume S(V ) = [ Γ, B(γ) ]. Then

(
⊔
γ∈Γ

B(γ), vmin) ↪→ (V, v).

Proof. By Zorn’s lemma, let B ⊂ V \ {0} be maximal valuation independent.
Set

V0 := Q〈 B 〉.

Then B is a valuation basis for V0 and V0 ⊆ V (immediate), so S(V0) =
S(V ) = [ Γ, B(γ) ] and

(V0, v) ∼= (
⊔
γ∈Γ

B(γ), vmin).

�
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1. Introduction

Our aim for this and next lecture is to complete the proof of Hahn’s em-
bedding Theorem:

Let (V, v) be a Q-valued vector space with S(V ) = [ Γ, B(γ) ].
Let {xi : i ∈ I} ⊂ V be maximal valuation independent and

h : V0 = (〈{xi : i ∈ I}〉, v) ∼−→ (
⊔
γ∈Γ

B(γ), vmin).

Then h extends to a valuation preserving embedding (i.e. an isomorphism
onto a valued subspace)

h̃ : (V, v) ↪→ (Hγ∈ΓB(γ), vmin).

The picture is the following:

(V, v)

immediate

� � h̃ // (Hγ∈ΓB(γ), vmin)

immediate

(V0, v) h
∼

// (
⊔
γ∈ΓB(γ), vmin)

2. Pseudo-convergence and maximality

Definition 2.1. A valued Q-vector space (V, v) is said to be maximally
valued if it admits no proper immediate extension.
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Definition 2.2. A well ordered set S = {aρ : ρ ∈ λ} ⊂ V without a last
element is said to be pseudo-convergent (or pseudo-Cauchy) if for every
ρ < σ < τ we have

v(aσ − aρ) < v(aτ − aσ).

Example 2.3.
(a) Let V = (HN0 R, vmin), where N0 = {0, 1, 2, . . . }. An element s ∈ V

can be viewed as a function s : N0 → R. Consider

a0 = (1, 0, 0, 0, 0 . . . )

a1 = (1, 1, 0, 0, 0 . . . )

a2 = (1, 1, 1, 0, 0 . . . )
...

The sequence {an : n ∈ N0} ⊂ V is pseudo-Cauchy.

(b) Take V as above and s ∈ V with

support(s) = N0,

i.e. si := s(i) 6= 0 ∀ i ∈ N0. Define the sequence

b0 = (s0, 0, 0, 0, 0 . . . )

b1 = (s0, s1, 0, 0, 0 . . . )

b2 = (s0, s1, s2, 0, 0 . . . )
...

For every l < m < n ∈ N0, we have

l + 1 = vmin(bm − bl) < vmin(bn − bm) = m+ 1.

Therefore {bn : n ∈ N0} ⊂ V is pseudo-Cauchy.

Lemma 2.4. If S = {aρ}ρ∈λ is pseudo-convergent then

(i) either v(aρ) < v(aσ) for all ρ < σ ∈ λ,

(ii) or ∃ ρ0 ∈ λ such that v(aρ) = v(aσ) ∀ ρ, σ > ρ0.

Proof. Assume (i) does not hold, i.e. v(aρ) > v(aσ) for some ρ < σ. Then
we claim that

v(aτ ) = v(aσ) ∀ τ > σ.

Otherwise, v(aτ − aσ) = min{v(aτ ), v(aσ)} 6 v(aσ).
But v(aσ − aρ) > v(aσ), contradicting 2.2. �

Notation 2.5. In case (ii) define

UltS := v(aρ0) = v(aρ) ∀ρ > ρ0.
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Lemma 2.6. If {aρ} is pseudo-convergent then for all ρ < σ we have

v(aσ − aρ) = v(aρ+1 − aρ).

Proof. We may assume σ > ρ+ 1 (so ρ < ρ+ 1 < σ). From

v(aρ+1 − aρ) < v(aσ − aρ+1)

and the identity

aσ − aρ = (aσ − aρ+1) + (aρ+1 − aρ),

we deduce that

v(aσ − aρ) = min(v(aσ − aρ+1), v(aρ+1 − aρ))
= v(aρ+1 − aρ).

�

Notation 2.7.

γρ : = v(aρ+1 − aρ)
= v(aσ − aρ) ∀σ > ρ.

Remark 2.8. Since ρ < ρ+ 1 < ρ+ 2, we have γρ < γρ+1 for all ρ.

3. Pseudo-limits

Definition 3.1. Let S = {aρ} be a pseudo-convergent set. We say that
x ∈ V is a pseudo-limit of S if

v(x− aρ) = γρ for all ρ.

Remark 3.2.
(i) If v(aρ) < v(aσ) for ρ < σ, then x = 0 is a pseudo-limit.

(ii) If 0 is not a pseudo-limit and x is a pseudo-limit, then v(x) = UltS.

Example 3.3.
(a) In Example 2.3(a), the costant function 1:

a = (1, 1, . . . )

is a pseudo-limit of the sequence {an}n∈N0 .

(b) In Example 2.3(b), s is a pseudo-limit of {bn}n∈N0 .

Definition 3.4. (V, v) is pseudo-complete if every pseudo-convergent se-
quence has a pseudo-limit in V .
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Definition 3.5. Let S = {aρ} be pseudo-convergent. The breadth (Breite)
B of S is defined to be the following subset of V :

B(S) = {y ∈ V : v(y) > γρ ∀ ρ}.

Lemma 3.6. Let {aρ} be pseudo-convergent with breadth B and let x ∈ V
be a pseudo-limit. Then an element of V is a pseudo-limit of {aρ} if and
only if it is of the form x+ y with y ∈ B.

Proof.
(⇒) Let z be another pseudo-limit of {aρ}. It follows from

x− z = (x− aρ)− (z − aρ)

that

v(x− z) > min{v(x− aρ), v(z − aρ)} = γρ ∀ ρ.

Since γρ is increasing, it follows that v(x− z) > γρ for all ρ.
So z ∈ B as required.

(⇐) If y ∈ B then v(y) > γρ = v(x− aρ) for all ρ. Then

v(x+ y − aρ) = v(x− aρ + y) = min{v(x− aρ), v(y)} = γρ ∀ ρ.
�

4. Cofinal subsets

Definition 4.1. Let Γ be a totally ordered set. A subset A ⊂ Γ is cofinal
in Γ if

∀ γ ∈ Γ ∃ a ∈ A with γ 6 a.

Example 4.2. If Γ = [0, 1] ⊂ R, then for instance A = {1} is cofinal in Γ.

Lemma 4.3. Let Γ be a totally ordered set. Then there is a well ordered
cofinal subset A ⊂ Γ. Moreover if Γ has no last element, then also A has no
last element.
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1. Pseudo-completeness

Let (V, v) be a valued Q-vector space. We recall that

- (V, v) is said to be maximally valued if it admits no proper imme-
diate extension.

- (V, v) is pseudo-complete if every pseudo-convergent sequence in
V has a pseudo-limit in V .

Theorem 1.1. (V, v) is maximally valued if and only if (V, v) is pseudo-
complete.

We prove only one implication:

(V, v) pseudo-complete ⇒ (V, v) maximally valued.

This implication follows from the following:

Proposition 1.2. Let (V, v) be an immediate extension of (V0, v). Then
any element in V which is not in V0 is a pseudo-limit of a pseudo-Cauchy
sequence of elements of V0, without a pseudo-limit in V0.

Proof. Let z ∈ V \V0. Consider the set

X = {v(z − a) : a ∈ V0}.

Since z /∈ V0, ∞ /∈ X.
We show that X cannot have a maximal element. Otherwise, assume

a0 ∈ V0 and v(z − a0) maximal in X. Since the extension is immediate, by
Lemma 2.2 of Lecture 24 there is a1 ∈ V0 such that v(z−a0−a1) > v(z−a0).
So a0 +a1 ∈ V0 and v(z− (a0 +a1)) > v(z−a0), contradiction. Then X has
no greatest element.

Select from X a well ordered cofinal subset {αρ}ρ∈λ. Since the set X has
no greatest member, also {αρ}ρ∈λ does not have a last term (see Lemma 4.3
of Lecture 25).
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For every ρ ∈ λ choose an element aρ ∈ V0 with

v(z − aρ) = αρ.

The identity
aσ − aρ = (z − aρ)− (z − aσ)

together with the inequality

v(z − aρ) < v(z − aσ) (∀ ρ < σ ∈ λ)

imply
(∗) v(aσ − aρ) = v(z − aρ).

Then {aρ}ρ∈λ is pseudo-convergent with z as a pseudo-limit.
Suppose now that {aρ}ρ∈λ had a further limit z1 ∈ V0.
Then by Lemma 3.6 of Lecture 25 we have

v(z − z1) > v(aσ − aρ).

Combining this with (∗) we get

v(z − z1) > v(z − aρ) = αρ ∀ ρ ∈ λ

and this is a contradiction, since {αρ}ρ∈λ is cofinal in X. �

Theorem 1.3. Suppose that

(i) Vi and V ′i are Q-valued vector spaces and V ′i is an immediate exten-
sion of Vi, for i = 1, 2.

(ii) h is an isomorphism of valued vector spaces of V1 onto V2.

(iii) V ′2 is pseudo-complete.

Then there exists an embedding h′ of valued vector spaces of V ′1 in V ′2 such
that h′ extends h.

Moreover h′ is an isomorphism of valued vector spaces of V ′1 onto V ′2 if
and only if V ′1 is pseudo-complete.

Proof. The picture is the following:

V ′1

immediate

� � h′ // V ′2

immediate

V1
h
∼
// V2

By Zorn’s Lemma, let

V1 ⊆M1 ⊆ V ′1 ,
V2 ⊆M2 ⊆ V ′2

and g a valuation isomorphism ofM1 ontoM2 extending h. We shall show
how to extend g to V ′1 .
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Let y1 ∈ V ′1 \M1. Since V ′1 is an immediate extension of M1 there exists
a pseudo-convergent sequence

S = {aρ}ρ∈λ

of M1 without a pseudo-limit in M1 but with a pseudo-limit y1 ∈ V ′1 .
Consider

g(S) = {g(aρ)}ρ∈λ

Since g is a valuation preserving isomorphism, g(S) is a pseudo-convergent
sequence ofM2 without a pseudo-limit inM2 but with pseudo-limit y2 ∈ V ′2 ,
because V ′2 is pseudo-complete.

LetM ′i = 〈Mi, yi〉, for i = 1, 2, and denote by g′ the unique Q-vector space
isomorphism of the linear space M ′1 onto the linear space M ′2 extending g
and such that g′(y1) = y2.

We show that g′ is valuation preserving: let

y = x+ qy1 x ∈M1 q ∈ Q \ {0}

be an arbitrary element of M ′1 \V1. The set

S(y) = {x+ qaρ}ρ∈λ

is a pseudo-convergent sequence in M1 with pseudo-limit y ∈M ′1 and 0 is
not a pseudo-limit (otherwise −x/q ∈M1 would be a pseudo-limit of S).

It follows that (since y = x+qy1 is a pseudo-limit for the sequence x+qaρ
which does not have 0 as a pseudo-limit)

v(y) = UltS(y)

similarly
v(g′(y)) = UltS(g′(y))

where
S(g′(y)) = {g′(x) + qg′(aρ)}ρ∈λ

is a pseudo-convergent sequence of M2 with limit g′(y) ∈M ′2.
Now g′|M1

= g is valuation preserving from M1 to M2. So we have

Ult(S(y)) = Ult(S(g′(y)))

hence
v(y) = v(g′(y))

as required. �

Proposition 1.4. Hγ∈ΓB(γ) is pseudo-complete.

Proof. Let {aρ}ρ∈λ be pseudo-Cauchy. Recall that

γρ = v(aρ − aρ+1)

is strictly increasing. Define x ∈ Hγ∈ΓB(γ) by
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x(γ) =

{
aρ(γ) if γ < γρ

0 otherwise.

It is well defined because if ρ1 < ρ2, γ < γρ1 and γ < γρ2 , then

v(aρ1 − aρ2) = γρ1

and then
aρ1(γ) = aρ2(γ).

We show now that support(x) is well ordered.
Let A ⊆ support(x), A 6= ∅ and γ0 ∈ A. Then ∃ ρ such that γ0 < γρ and

x(γ0) = aρ(γ0) with γ0 ∈ support(aρ).
Consider

A0 := {γ ∈ A : γ 6 γ0}.

Note that since x(γ) = aρ(γ) for γ 6 γ0 it follows that A0 ⊆ support(aρ)
which is well ordered, so minA0 exists in A0 and it is the least element of A.

We now conclude by showing that x is a pseudo-limit. From definition of
x we have

v(x− aρ) > γρ = v(aρ+1 − aρ) ∀ ρ.

If v(x− aρ) > v(aρ − aρ+1), then

v(x− aρ+1) = v(x− aρ + aρ − aρ+1) = v(aρ − aρ+1) = γρ
but

v(x− aρ+1) > γρ+1 > γρ,

contradiction. �

As a corollary to the general embedding theorem and this proposition we
get Hahn’s embedding’s theorem.
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1. Ordered abelian groups

Definition 1.1. (G,+, 0, <) is an ordered abelian group if (G,+, 0) is
an abelian group and < is a total order on G such that for every a, b, c ∈ G

a 6 b ⇒ a+ c 6 b+ c.

Definition 1.2. A subgroup C of an ordered abelian group G is convex if
∀ c1, c2 ∈ C and ∀x ∈ G

c1 < x < c2 ⇒ x ∈ C.

Examples 1.3. C = {0} and C = G are convex subgroups.

Definition 1.4. Let G be an abelian ordered group, x ∈ G, x 6= 0.
We define:

Cx :=
⋂
{C : C is a convex subgroup of G and x ∈ C}.

Dx :=
⋃
{D : D is a convex subgroup of G and x /∈ D}.

A convex subgroup C of G is said to be principal if there is some x ∈ G
such that C = Cx.

Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 112



2 SALMA KUHLMANN

Proposition 1.5.
(1) Dx is a proper convex subgroup of Cx.

(2) Dx is the largest proper convex subgroup of Cx, i.e. if C is a convex
subgroup such that

Dx ⊆ C ⊆ Cx

then C = Dx or C = Cx.

(3) It follows that the ordered abelian group Cx/Dx has no non-trivial
proper convex subgroup.

2. Archimedean groups

Definition 2.1. Let (A,+, 0, <) be an ordered abelian group. We say that
A is archimedean if for all non-zero a1, a2 ∈ A:

∃n ∈ N : n|a1| > |a2| and n|a2| > |a1|,

where for every a ∈ A, |a| := max{a,−a}.

Proposition 2.2. (Hölder) Every archimedean group is isomorphic to a
subgroup of (R,+, 0, <).

Proposition 2.3. A is archimedean if and only if A has no non-trivial
proper convex subgroup.

Therefore if G is an ordered group and x ∈ G with x 6= 0, the quotient
Cx/Dx is archimedean (by 2.3) and can be embedded in (R,+, 0, <) (by 2.2).

Definition 2.4. Let G be an ordered group, x ∈ G, x 6= 0. We say that

Bx := Cx/Dx

is the archimedean component of x in G.

3. Archimedean equivalence

Definition 3.1. An abelian group G is divisible if for every x ∈ G and for
every n ∈ N there is y ∈ G such that x = ny.

Remark 3.2. Any ordered divisible abelian group G is a Q-vector space
and G can be viewed as a valued Q-vector space in a natural way.

Definition 3.3. (archimedean equivalence) For every x, y ∈ G we define

x ∼+ y ⇔ ∃n ∈ N n|x| > |y| and n|y| > |x|.
x <<+ y ⇔ ∀n ∈ N n|x| < |y|.
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Proposition 3.4.
(1) ∼+ is an equivalence relation.

(2) ∼+ is compatible with <<+:

x <<+ y and x ∼+ z ⇒ z <<+ y,

x <<+ y and y ∼+ z ⇒ x <<+ z.

Because of the last proposition we can define an order <Γ on Γ := G/ ∼+=
{[x] : x ∈ G} as follows:

[y] <Γ [x] ⇔ x <<+ y.

Proposition 3.5.
(1) Γ is a totally ordered set under <Γ.

(2) The map

v : G −→ Γ ∪ {∞}
0 7→ ∞
x 7→ [x] (if x 6= 0)

is a valuation on G as a Z-module:

For every x, y ∈ G:
- v(x) =∞ iff x = 0,

- v(nx) = v(x) ∀n ∈ Z, n 6= 0,

- v(x+ y) > min{v(x), v(y)}.

(3) if x ∈ G, x 6= 0, v(x) = γ, then

Gγ := {a ∈ G : v(a) > γ} = Cx.

Gγ := {a ∈ G : v(a) > γ} = Dx.

So

Bx = Cx/Dx = Gγ/Gγ = B(γ)

is the archimedean component associated to γ.
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1. Examples

If G is a Hahn group, namely a Hahn sum

G =
⊔
γ∈Γ

B(γ)

or a Hahn product
G = Hγ∈ΓB(γ)

as in section 2 of Lecture 23, then the valued Q-vector space (G, vmin) is
isomorphic to (G, v), where v is the natural valuation explained in the last
lecture (Lecture 27, section 3). Namely

∀x, y ∈ G v(x) = v(y) ⇔ vmin(x) = vmin(y).

2. Valued fields

Definition 2.1. Let K be a field, G an ordered abelian group and ∞ an
element greater than every element of G. A surjective map

w : K −→ G ∪ {∞}

is a valuation if and only if ∀ a, b ∈ K:

(i) w(a) =∞ ⇔ a = 0.

(ii) w(ab) = w(a) + w(b).

(iii) w(a− b) > min{w(a), w(b)}.

Immediate consequences are:
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• w(a) = w(−a),

• w(a−1) = −w(a) if a 6= 0,

• w(a) 6= w(b) ⇒ w(a+ b) = min{w(a), w(b)}.

Definition 2.2.

Rw :={a ∈ K : w(a) > 0} is the valuation ring.
Iw :={a ∈ K : w(a) > 0} is the valuation ideal.

Lemma 2.3. Iw is an ideal of the ring Rw and it is maximal proper.

Thus Rw/Iw is a field denoted by Kw and called the residue field.
The residue map is the canonical surjection:

Rw −→ Rw/Iw

b 7→ b+ Iw := bw

The group of units of the valuation ring Rw is given by

Uw = {a ∈ K : w(a) = 0}

and it is a subgroup of the multiplicative group of Rw.
The group of 1-units is the multiplicative subgroup of Uw given by

1 + Iw = {a ∈ K : w(a− 1) > 0}.

3. The natural valuation of an ordered field

Let (K,+, ·, 0, 1, <) be a totally ordered field.

Remark 3.1. (K,+, 0, <) is a totally ordered divisible abelian group.

So we have the natural valuation v on K as a Q-vector space. Setting
G := v(K \ {0}), we have:

v : K −→ G ∪ {∞}
0 6= a 7→ v(a) := [a]

0 7→ ∞

We shall show now that we can endow the totally ordered value set (G,<)
with a group operation + such that (G,+, <) is a totally ordered abelian
group. For every a, b ∈ K \ {0} define

[a] + [b] := [ab].

Lemma 3.2. This addition is well defined and (G,+, <) is a totally ordered
abelian group.
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4. The field of power series

Let K be a field and G a totally ordered abelian group.
The field of formal power series with coefficients in K and exponent in G

is the set of formal objects

K((G)) :={s =
∑
g∈G

s(g)tg : s(g) ∈ K and support(s) = {g ∈ G : s(g) 6= 0}

is well ordered in G}

with the following addition and multiplication:

(
∑
g∈G

s(g)tg) + (
∑
g∈G

r(g)tg) :=
∑
g∈G

(s(g) + r(g)) tg.

(
∑
g∈G

s(g)tg) · (
∑
g∈G

r(g)tg) :=
∑
g∈G

(
∑
g′∈G

r(g′)s(g − g′)) tg.

Lemma 4.1. This multiplication is well defined:
(1) the sum is finite.
(2) support(rs) is well ordered.

To see that K((G)) is a field, we compute the inversion function. Let
s ∈ K((G)) with min support(s) = g0. We can write

s = s(g0)t
g0(1 + ε),

and then
s−1 =

1

s(g0)
t−g0(1 + ε)−1,

with
(1 + ε)−1 =

∑
i∈N

aiε
i.

Example 4.2. If G = Z andK = R, K((G)) = R((Z)) is the field of Laurent
series with coefficients in R:

s =
∞∑

n=−m
s(n)tn s(n) ∈ R.
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1. Hardy fields

Definition 1.1. (Hardy field) Consider the set of all real valued functions
defined on positive half lines:

F := {f | f : [a,∞)→ R or f : (a,∞)→ R, a ∈ R}.

For every f, g ∈ F we define

f ∼ g ⇔ ∃N ∈ N s.t. f(x) = g(x) ∀x > N.

When f ∼ g we say that f and g have the same germ at ∞.
We identify f ∈ F with its germ [f ].

We denote by G the set of all germs. Note that G is a commutative ring
with 1 by:

[f ] + [g] := [f + g]

[f ] · [g] := [f · g]

A subring H of G is a Hardy field if it is a field with respect to the
operations above and it is closed under differentiation, i.e.

f ∈ H ⇒ f ′ ∈ H.

Remark 1.2. (defininig a total order on a Hardy field). Let H be a Hardy
field and f ∈ H, f 6= 0.

Since 1/f ∈ H, f(x) 6= 0 ultimately. Moreover since f ′ ∈ H, f is ulti-
mately differentiable and thus ultimately continuous.

It follows that sign(f) is constant ultimately (i.e. f is strictly positive on
some interval (N,∞) or f is strictly negative on some interval (N,∞)).

This key property allows us to define a total order on H:
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Definition 1.3. Let H be a Hardy field. For every f, g we define

f > g ⇔ f − g is ultimately positive.

Lemma 1.4. > above is an ordering on H.

Examples 1.5.

(1) Q and R are Hardy fields consisting of just constant germs. They
are archimedean Hardy fields.

(2) Let x denote the germ of the identity function. Then x > R and R(x)
is a non-archimedean Hardy field.

Lemma 1.6. (Monotonicity) Let H be a Hardy field and f ∈ H, f ′ 6= 0.
Since f ′ is ultimately positive or negative, it follows that f is ultimately
increasing or decreasing. Therefore

∃ lim
x→∞

f(x) ∈ R ∪ {−∞, +∞}.

2. The natural valuation of a Hardy field

Definition 2.1. (Valuation on H). Let H be a Hardy field. Define for
f, g 6= 0

f ∼ g ⇔ lim
x→∞

f(x)
g(x)

= r ∈ R \ {0}.

This is an equivalence relation. Denote the equivalence class of f by v(f).
Define

v(f) + v(g) := v(fg),

and

v(f) > v(g) ⇔ lim
x→∞

f(x)
g(x)

= 0.

Lemma 2.2. The map

H −→ H/ ∼ ∪ {∞}
0 6= f 7→ v(f)

0 7→ ∞

is a valuation and it is equivalent to the natural valuation.
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Remark 2.3.

Rv = {f : lim
x→∞

f(x) ∈ R}.

Iv = {f : lim
x→∞

f(x) = 0}.

Uv = {f : lim
x→∞

f(x) ∈ R \ {0}}.
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1. Convex valuations

Let K be a non-archimedean ordered field. Let v be its non-trivial natural
valuation with valuation ring Rv and valuation ideal Iv.

Remark 1.1.
(1) Rv/Iv is archimedean.

(2) Rv is the convex hull of Q in K.

Let w be any valuation of K with valuation ring Rw, valuation ideal Iw
and residue field Kw := Rw/Iw.

Definition 1.2. We say that w is compatible with the order if ∀ a, b ∈ K

0 < a 6 b ⇒ w(a) > w(b).

Compatible valuations are also called convex valuations.

Example 1.3. The natural valuation is compatible with the order.

Remark 1.4. We recall that a subset C of a totally ordered set X is said
to be convex if ∀ c1, c2 ∈ C and x ∈ X:

c1 < x < c2 ⇒ x ∈ C.

If C is a subgroup of an ordered abelian group A, equivalently C is convex
if and only if ∀ c ∈ C and a ∈ A:

0 < a < c ⇒ a ∈ C.
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Proposition 1.5. (Characterization of convex valuations). The following
are equivalent:

(1) w is compatible with the order of K.

(2) Rw is convex.

(3) Iw is convex.

(4) Iw < 1.

(5) 1 + Iw ⊆ K>0.

(6) The residue map

Rw −→ Rw/Iw

a 7→ a+ Iw

induces an ordering on Kw given by

a+ Iw > 0 ⇔ a > 0.

(7) The set

U>0
w := {a ∈ K : w(a) = 0 ∧ a > 0}

of positive units is a convex subgroup of (K>0, ·, 1, <).

Proof. (1)⇒ (2). 0 6 a 6 b ∈ Rw ⇒ w(a) > w(b) > 0.

(2) ⇒ (3). Let a, b ∈ K with 0 < a < b ∈ Iw. Since w(b) > 0, it follows
that w(b−1) = −w(b) < 0 and then b−1 /∈ Rw.

Therefore also a−1 /∈ Rw, because 0 < b−1 < a−1 and Rw is convex by
assumption. Hence w(a) > 0 and a ∈ Iw.

(3)⇒ (4). Otherwise 1 ∈ Iw but w(1) = 0, contradiction.

(4)⇒ (5). Clear.

�

2. Comparison of convex valuations

Let w and w′ be valuations on K. We say that w′ is finer than w or w is
coarser than w′ if w′ has a smallest valuation ring, i.e. if

Rw′ ( Rw.

Lemma 2.1.
(1) Rw′ ( Rw if and only if Iw ( Iw′ .
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(2) If w′ is convex and Rw′ ( Rw, then w is also convex.

(3) The set R of all convex valuation rings Rw is totally ordered by in-
clusion.

(4) The natural valuation is the finest convex valuation, i.e.

Rv ( Rw,

for every convex valuation w 6= v.

3. The rank of ordered fields

Definition 3.1. Let K be an ordered field with natural valuation v. The
set R of all valuation rings Rw of convex valuations w 6= v is called the rank
of K.

Examples 3.2.
• The rank of an archimedean ordered field is empty since its natural
valuation is trivial.

• The rank of the rational function field K = R(t) with any order is a
singleton.

4. Convex valuations and convex subgroups

Notation 4.1. For simplicity we denote by w(K) the value group of a val-
uation w on K (even if w(0) =∞).

To every convex valuation w on K we associate a convex subgroup Gw of
v(K), namely

Gw := {v(a) : a ∈ K ∧ w(a) = 0} = v(U>0
w ).

Proposition 4.2.
w(K) ∼= v(K)/Gw

canonically.

Proof. The map

v(K)/Gw −→ w(K)

v(a) +Gw 7→ w(a)

is well defined and an isomorphism. �
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We call Gw the convex subgroup associated to w. Note that the
convex subgroup Gv associated to the natural valuation v is

Gv = {0}.

Conversely, given a convex subgroup Gw of v(K) we define a map:

w : K −→ v(K)/Gw ∪ {∞}
0 6= a 7→ v(a) +Gw

0 7→ ∞

Then w is a convex valuation with v(U>0
w ) = Gw. We call w the convex

valuation associated to Gw.

We have proved the following theorem:

Theorem 4.3. There is a bijection between the set of convex valuations on
an ordered field K and the set of convex subgroups of the value group v(K)
associated to the natural valuation v.
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