REAL ALGEBRAIC GEOMETRY LECTURE NOTES (02: 22/10/09)

SALMA KUHLMANN

Contents

1.	The field $\mathbb{R}(\mathbf{x})$	1
2.	Dedekind cuts	2
3.	The orderings on $\mathbb{R}(\mathbf{x})$	3
4.	Order preserving embeddings	4

1. The field $\mathbb{R}(x)$

Let us consider again the field $\mathbb{R}(x)$ of the rational functions on $\mathbb{R}[x]$:

Example 1.1. Let $f(\mathbf{x}) = a_n \mathbf{x}^n + a_{n-1} \mathbf{x}^{n-1} + \cdots + a_1 \mathbf{x} + a_0 \in \mathbb{R}[\mathbf{x}]$ and let $k \in \mathbb{N}$ the smallest index such that $a_k \neq 0$ (and therefore actually $f(\mathbf{x}) = a_n \mathbf{x}^n + \cdots + a_k \mathbf{x}^k$). We define

$$f(\mathbf{x}) > 0 \iff a_k > 0$$

and then for every $f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ with $g(\mathbf{x}) \neq 0$ we define

$$\frac{f(\mathbf{x})}{g(\mathbf{x})} \geqslant 0 \ \Leftrightarrow \ f(\mathbf{x})g(\mathbf{x}) \geqslant 0.$$

This is a total order on

$$\mathbb{R}(\mathbf{x}) = \left\{ \frac{f(\mathbf{x})}{g(\mathbf{x})} : f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}] \text{ and } g(\mathbf{x}) \neq 0 \right\}$$

which makes $(\mathbb{R}(\mathbf{x}), \leq)$ an ordered field.

Remark 1.2. By the definition above

$$f(\mathbf{x}) = \mathbf{x} - r < 0 \qquad \forall r \in \mathbb{R}, \ r > 0.$$

Therefore the element $x \in \mathbb{R}(x)$ is such that

$$0 < \mathbf{x} < r \quad \forall r \in \mathbb{R}, \ r > 0.$$

We can see that there is no other ordering on $\mathbb{R}(\mathbf{x})$ which satisfies the above property:

Proposition 1.3. Let \leq be the ordering on $\mathbb{R}(x)$ defined in 1.1. Then \leq is the unique ordering on $\mathbb{R}(x)$ such that

$$0 < \mathbf{x} < r \quad \forall r \in \mathbb{R}, \ r > 0.$$

Proof. Assume that \leq is an ordering on $\mathbb{R}(\mathbf{x})$ such that

$$0 < \mathbf{x} < r \quad \forall r \in \mathbb{R}, \ r > 0.$$

Then (see Proposition 2.4 of last lecture)

$$0 < \mathbf{x}^m < r \quad \forall \, m \ge 1, \ m \in \mathbb{N}, \ \forall \, r > 0, \ r \in \mathbb{R}.$$

Let $f(\mathbf{x}) = a_n \mathbf{x}^n + a_{n-1} \mathbf{x}^{n-1} + \dots + a_k \mathbf{x}^k \in \mathbb{R}[\mathbf{x}]$ with $k \in \mathbb{N}$ the smallest index such that $a_k \neq 0$. We want to prove that $\operatorname{sign}(f) = \operatorname{sign}(a_k)$.

Let $g(\mathbf{x}) = a_n \mathbf{x}^{n-k} + \dots + a_{k+1}\mathbf{x} + a_k$. Then $f(\mathbf{x}) = \mathbf{x}^k g(\mathbf{x})$.

If k = 0, then $f(\mathbf{x}) = g(\mathbf{x})$. Otherwise $f(\mathbf{x}) \neq g(\mathbf{x})$, and since $\operatorname{sign}(f) = \operatorname{sign}(\mathbf{x}^k) \operatorname{sign}(g)$ and $\operatorname{sign}(\mathbf{x}^k) = 1$, it follows that $\operatorname{sign}(f) = \operatorname{sign}(g)$. We want $\operatorname{sign}(g) = \operatorname{sign}(a_k)$.

If $g(\mathbf{x}) = a_k$ we are done. Otherwise let $h(\mathbf{x}) = a_n \mathbf{x}^{n-k-1} + \cdots + a_{k+2}\mathbf{x} + a_{k+1}$. Then $g(\mathbf{x}) = a_k + \mathbf{x}h(\mathbf{x})$ and $h(\mathbf{x}) \neq 0$. Since $|\mathbf{x}^m| < 1$ for every $m \in \mathbb{N}$, we get

$$|h(\mathbf{x})| \leq |a_n| + \dots + |a_{k+1}| := c > 0, \qquad c \in \mathbb{R}.$$

Then

$$|\mathbf{x}h(\mathbf{x})| \leqslant c|\mathbf{x}| < |a_k|,$$

otherwise $|\mathbf{x}| \ge \frac{|a_k|}{c}$, contradiction.

Therefore $\operatorname{sign}(g) = \operatorname{sign}(a_k + \mathbf{x}h) = \operatorname{sign}(a_k)$, as required (Note that one needs to verify that $|a| > |b| \Rightarrow \operatorname{sign}(a+b) = \operatorname{sign}(a)$).

We now want to classify all orderings on $\mathbb{R}(x)$ which make it into an ordered field. For this we need the notion of Dedekind cuts.

2. Dedekind cuts

Notation 2.1. Let (Γ, \leq) be a totally ordered set and let $L, U \subseteq \Gamma$. If we write

L < U

we mean that

$$x < y \quad \forall x \in L, \ \forall y \in U.$$

(Similarly for $L \leq U$)

Definition 2.2. (*Dedekindschnitt*) Let (Γ, \leq) be a totally ordered set. A **Dedekind cut** of (Γ, \leq) is a pair (L, U) such that $L, U \subseteq \Gamma, L \cup U = \Gamma$ and L < U.

3

Remark 2.3. Since L < U it follows that $L \cap U = \emptyset$. Therefore the subsets L, U form a partition of Γ (The letter "L" stands for "lower cut" and the letter "U" for "upper cut").

Example 2.4. Let (Γ, \leq) be a totally ordered set. For every $\gamma \in \Gamma$ we can consider the following two Dedekind cuts:

$$\gamma_{-} := (] - \infty, \gamma[, [\gamma, \infty[)$$

$$\gamma_{+} := (] - \infty, \gamma], [\gamma, \infty[)$$

Moreover if we take $L, U \in \{\emptyset, \Gamma\}$, then we have two more cuts:

$$-\infty := (\emptyset, \Gamma), \quad +\infty := (\Gamma, \emptyset)$$

Example 2.5. Consider the Dedekind cut (L, U) of (\mathbb{Q}, \leq) given by

$$L = \{x \in \mathbb{Q} : x < \sqrt{2}\} \quad \text{and} \quad U = \{x \in \mathbb{R} : x > \sqrt{2}\}.$$

Then there is no $\gamma \in \mathbb{Q}$ such that $(L, U) = \gamma_{-}$ or $(L, U) = \gamma_{+}$.

Definition 2.6. (trivialen und freie Schnitte) Let (L, U) be a Dedekind cut of a totally ordered set (Γ, \leq) . If $(L, U) = \pm \infty$ or there is some $\gamma \in \Gamma$ such that $(L, U) = \gamma_+$ or $(L, U) = \gamma_-$ (as defined in 2.4), then (L, U) is said to be a **trivial** (or **realized**) Dedekind cut. Otherwise it is said to be a **free** Dedekind cut (or **gap**).

Remark 2.7. A Dedekind cut (L, U) of a totally ordered set (Γ, \leq) is free if $L \neq \emptyset$, $U \neq \emptyset$, L has no maximum element and U has no least element.

Definition 2.8. (*Dedekindvollständing*) A totally ordered set (Γ, \leq) is said to be **Dedekind complete** if for every pair (L, U) of subsets of Γ with $L \neq \emptyset, U \neq \emptyset$ and $L \leq U$, there exists $\gamma \in \Gamma$ such that

$$L \leqslant \gamma \leqslant U.$$

Exercise 2.9. Show that a totally ordered set (Γ, \leq) is Dedekind complete if and only if (Γ, \leq) has no free Dedekind cut.

Examples 2.10.

- The ordered set of the reals (\mathbb{R}, \leq) is Dedekind complete, i.e. the set of Dedekind cuts of (\mathbb{R}, \leq) is $\{a_{\pm} : a \in \mathbb{R}\} \cup \{-\infty, +\infty\}$.
- We have already seen in 2.5 that (\mathbb{Q}, \leq) is not Dedekind complete. We can generalize 2.5: for every $\alpha \in \mathbb{R} - \mathbb{Q}$ we have the gap given by $(] - \infty, \alpha[\cap \mathbb{Q},]\alpha, \infty[\cap \mathbb{Q}).$

3. The orderings on $\mathbb{R}(\mathbf{x})$

Theorem 3.1. There is a canonical bijection between the set of the orderings on $\mathbb{R}(\mathbf{x})$ and the set of the Dedekind cuts of \mathbb{R} .

Proof. Let \leq be an ordering on $\mathbb{R}(\mathbf{x})$. Consider the sets $L = \{v \in \mathbb{R} : v < \mathbf{x}\}$ and $U = \{w \in \mathbb{R} : \mathbf{x} < w\}$. Then $\mathcal{C}_{\mathbf{x}}^{\leq} := (L, U)$ is a Dedekind cut of \mathbb{R} . (Note that if \leq is the order defined in 1.1 then $\mathcal{C}_{\mathbf{x}}^{\leq} = 0_+$). So we can define a map

SALMA KUHLMANN

$$\begin{split} \{ \leqslant : \leqslant \text{ is an ordering on } \mathbb{R}(\mathbf{x}) \} & \stackrel{f}{\longrightarrow} \{ (L,U) : (L,U) \text{ is a Dedekind cut of } \mathbb{R} \} \\ & \leqslant & \mapsto & \mathcal{C}_{\mathbf{x}}^{\leqslant} \end{split}$$

We now want to find a map

 $\{(L,U): (L,U) \text{ is a Dedekind cut of } \mathbb{R} \} \longrightarrow \{ \leqslant : \leqslant \text{ is an ordering on } \mathbb{R}(\mathbf{x}) \}$

which is the inverse of f. Every Dedekind cut of (\mathbb{R}, \leq) is of the form $-\infty$, $a_-, a_+, +\infty$, with $a \in \mathbb{R}$. With a change of variable, respectively, y := -1/x, y := a - x, y := x - a, y := 1/x, we obtain an ordering on $\mathbb{R}(y)$ such that

$$0 < y < r \quad \forall r \in \mathbb{R}, r > 0$$

We have seen in 1.3 that there is only one ordering with such a property, so we have a well-defined map from the set of the Dedekind cuts of (\mathbb{R}, \leq) into the set of orderings of $\mathbb{R}(\mathbf{x})$. It is precisely the inverse of f.

4. Order preserving embeddings

Definition 4.1. (*ordungstreue Einbettung*) Let (K, \leq) and (F, \leq) be ordered fields. An injective homomorphism of fields

 $\varphi \colon K \ \hookrightarrow \ F$

is said to be an order preserving embedding if

$$a \leq b \Rightarrow \varphi(a) \leq \varphi(b) \quad \forall a, b \in K.$$

Theorem 4.2 (Hölder). Let (K, \leq) be an Archimedean ordered field. Then there is an order preserving embedding

$$\varphi \colon K \hookrightarrow \mathbb{R}.$$

Proof. Let $a \in K$. Consider the sets

$$I_a :=] - \infty, a]_K \cap \mathbb{Q}$$
 and $F_a := [a, \infty]_K \cap \mathbb{Q}.$

Then $I_a \leq F_a$ and $I_a \cup F_a = \mathbb{Q}$. So we can define

$$\varphi(a) := \sup I_a = \inf F_a \in \mathbb{R}.$$

Since K is Archimedean, φ is well-defined. Note that

$$I_a + I_b = \{x + y : x \in I_a, y \in I_b\} \subseteq I_{a+b}$$

and

$$F_a + F_b \subseteq F_{a+b},$$

then $\varphi(a) + \varphi(b) \leq \varphi(a+b)$ and $\varphi(a) + \varphi(b) \geq \varphi(a+b)$. This proves that φ is additive. Similarly one gets $\varphi(ab) = \varphi(a)\varphi(b)$.