REAL ALGEBRAIC GEOMETRY LECTURE NOTES (02: 22/10/09)

SALMA KUHLMANN

Contents

$\begin{array}{lll}\text { 1. } & \text { The field } \mathbb{R}(\mathrm{x}) & 1 \\ \text { 2. } & \text { Dedekind cuts } & 2 \\ \text { 3. } & \text { The orderings on } \mathbb{R}(\mathrm{x}) & 3 \\ \text { 4. Order preserving embeddings } & 4\end{array}$

1. The field $\mathbb{R}(\mathrm{x})$

Let us consider again the field $\mathbb{R}(\mathrm{x})$ of the rational functions on $\mathbb{R}[\mathrm{x}]$:
Example 1.1. Let $f(\mathrm{x})=a_{n} \mathrm{x}^{n}+a_{n-1} \mathrm{x}^{n-1}+\cdots+a_{1} \mathrm{x}+a_{0} \in \mathbb{R}[\mathrm{x}]$ and let $k \in \mathbb{N}$ the smallest index such that $a_{k} \neq 0$ (and therefore actually $f(\mathrm{x})=$ $\left.a_{n} \mathrm{x}^{n}+\cdots+a_{k} \mathrm{x}^{k}\right)$. We define

$$
f(\mathrm{x})>0 \Leftrightarrow a_{k}>0
$$

and then for every $f(\mathrm{x}), g(\mathrm{x}) \in \mathbb{R}[\mathrm{x}]$ with $g(\mathrm{x}) \neq 0$ we define

$$
\frac{f(\mathrm{x})}{g(\mathrm{x})} \geqslant 0 \Leftrightarrow f(\mathrm{x}) g(\mathrm{x}) \geqslant 0
$$

This is a total order on

$$
\mathbb{R}(\mathrm{x})=\left\{\frac{f(\mathrm{x})}{g(\mathrm{x})}: f(\mathrm{x}), g(\mathrm{x}) \in \mathbb{R}[\mathrm{x}] \text { and } g(\mathrm{x}) \neq 0\right\}
$$

which makes $(\mathbb{R}(\mathrm{x}), \leqslant)$ an ordered field.
Remark 1.2. By the definition above

$$
f(\mathrm{x})=\mathrm{x}-r<0 \quad \forall r \in \mathbb{R}, r>0
$$

Therefore the element $\mathrm{x} \in \mathbb{R}(\mathrm{x})$ is such that

$$
0<\mathrm{x}<r \quad \forall r \in \mathbb{R}, r>0
$$

We can see that there is no other ordering on $\mathbb{R}(x)$ which satisfies the above property:

Proposition 1.3. Let \leqslant be the ordering on $\mathbb{R}(\mathrm{x})$ defined in 1.1. Then \leqslant is the unique ordering on $\mathbb{R}(\mathrm{x})$ such that

$$
0<\mathrm{x}<r \quad \forall r \in \mathbb{R}, r>0
$$

Proof. Assume that \leqslant is an ordering on $\mathbb{R}(\mathrm{x})$ such that

$$
0<\mathrm{x}<r \quad \forall r \in \mathbb{R}, r>0
$$

Then (see Proposition 2.4 of last lecture)

$$
0<\mathrm{x}^{m}<r \quad \forall m \geqslant 1, m \in \mathbb{N}, \forall r>0, r \in \mathbb{R}
$$

Let $f(\mathrm{x})=a_{n} \mathrm{x}^{n}+a_{n-1} \mathrm{x}^{n-1}+\cdots+a_{k} \mathrm{x}^{k} \in \mathbb{R}[\mathrm{x}]$ with $k \in \mathbb{N}$ the smallest index such that $a_{k} \neq 0$. We want to prove that $\operatorname{sign}(f)=\operatorname{sign}\left(a_{k}\right)$.

Let $g(\mathrm{x})=a_{n} \mathrm{x}^{n-k}+\cdots+a_{k+1} \mathrm{x}+a_{k}$. Then $f(\mathrm{x})=\mathrm{x}^{k} g(\mathrm{x})$.
If $k=0$, then $f(\mathrm{x})=g(\mathrm{x})$. Otherwise $f(\mathrm{x}) \neq g(\mathrm{x})$, and since $\operatorname{sign}(f)=$ $\operatorname{sign}\left(\mathrm{x}^{k}\right) \operatorname{sign}(g)$ and $\operatorname{sign}\left(\mathrm{x}^{k}\right)=1$, it follows that $\operatorname{sign}(f)=\operatorname{sign}(g)$. We want $\operatorname{sign}(g)=\operatorname{sign}\left(a_{k}\right)$.

If $g(\mathrm{x})=a_{k}$ we are done. Otherwise let $h(\mathrm{x})=a_{n} \mathrm{x}^{n-k-1}+\cdots+a_{k+2} \mathrm{x}+$ a_{k+1}. Then $g(\mathrm{x})=a_{k}+\mathrm{x} h(\mathrm{x})$ and $h(\mathrm{x}) \neq 0$. Since $\left|\mathrm{x}^{m}\right|<1$ for every $m \in \mathbb{N}$, we get

$$
|h(\mathrm{x})| \leqslant\left|a_{n}\right|+\cdots+\left|a_{k+1}\right|:=c>0, \quad c \in \mathbb{R}
$$

Then

$$
|\mathrm{xh}(\mathrm{x})| \leqslant c|\mathrm{x}|<\left|a_{k}\right|
$$

otherwise $|\mathrm{x}| \geqslant \frac{\left|a_{k}\right|}{c}$, contradiction.
Therefore $\operatorname{sign}(g)=\operatorname{sign}\left(a_{k}+\mathrm{xh}\right)=\operatorname{sign}\left(a_{k}\right)$, as required (Note that one needs to verify that $|a|>|b| \Rightarrow \operatorname{sign}(a+b)=\operatorname{sign}(a))$.

We now want to classify all orderings on $\mathbb{R}(x)$ which make it into an ordered field. For this we need the notion of Dedekind cuts.

2. Dedekind cuts

Notation 2.1. Let (Γ, \leqslant) be a totally ordered set and let $L, U \subseteq \Gamma$. If we write

$$
L<U
$$

we mean that

$$
x<y \quad \forall x \in L, \forall y \in U
$$

(Similarly for $L \leqslant U$)
Definition 2.2. (Dedekindschnitt) Let (Γ, \leqslant) be a totally ordered set. A Dedekind cut of (Γ, \leqslant) is a pair (L, U) such that $L, U \subseteq \Gamma, L \cup U=\Gamma$ and $L<U$.

Remark 2.3. Since $L<U$ it follows that $L \cap U=\varnothing$. Therefore the subsets L, U form a partition of Γ (The letter " L " stands for "lower cut" and the letter " U " for "upper cut").
Example 2.4. Let (Γ, \leqslant) be a totally ordered set. For every $\gamma \in \Gamma$ we can consider the following two Dedekind cuts:

$$
\begin{aligned}
& \gamma_{-}:=(]-\infty, \gamma[,[\gamma, \infty[) \\
& \left.\left.\gamma_{+}:=(]-\infty, \gamma\right],\right] \gamma, \infty[)
\end{aligned}
$$

Moreover if we take $L, U \in\{\varnothing, \Gamma\}$, then we have two more cuts:

$$
-\infty:=(\varnothing, \Gamma), \quad+\infty:=(\Gamma, \varnothing)
$$

Example 2.5. Consider the Dedekind cut (L, U) of (\mathbb{Q}, \leqslant) given by

$$
L=\{x \in \mathbb{Q}: x<\sqrt{2}\} \quad \text { and } \quad U=\{x \in \mathbb{R}: x>\sqrt{2}\} .
$$

Then there is no $\gamma \in \mathbb{Q}$ such that $(L, U)=\gamma_{-}$or $(L, U)=\gamma_{+}$.
Definition 2.6. (trivialen und freie Schnitte) Let (L, U) be a Dedekind cut of a totally ordered set (Γ, \leqslant). If $(L, U)= \pm \infty$ or there is some $\gamma \in \Gamma$ such that $(L, U)=\gamma_{+}$or $(L, U)=\gamma_{-}$(as defined in 2.4), then (L, U) is said to be a trivial (or realized) Dedekind cut. Otherwise it is said to be a free Dedekind cut (or gap).
Remark 2.7. A Dedekind cut (L, U) of a totally ordered set (Γ, \leqslant) is free if $L \neq \varnothing, U \neq \varnothing, L$ has no maximum element and U has no least element.
Definition 2.8. (Dedekindvollständing) A totally ordered set (Γ, \leqslant) is said to be Dedekind complete if for every pair (L, U) of subsets of Γ with $L \neq \varnothing, U \neq \varnothing$ and $L \leqslant U$, there exists $\gamma \in \Gamma$ such that

$$
L \leqslant \gamma \leqslant U
$$

Exercise 2.9. Show that a totally ordered set (Γ, \leqslant) is Dedekind complete if and only if (Γ, \leqslant) has no free Dedekind cut.

Examples 2.10.

- The ordered set of the reals (\mathbb{R}, \leqslant) is Dedekind complete, i.e. the set of Dedekind cuts of (\mathbb{R}, \leqslant) is $\left\{a_{ \pm}: a \in \mathbb{R}\right\} \cup\{-\infty,+\infty\}$.
- We have already seen in 2.5 that (\mathbb{Q}, \leqslant) is not Dedekind complete. We can generalize 2.5: for every $\alpha \in \mathbb{R}-\mathbb{Q}$ we have the gap given by (]$-\infty, \alpha[\cap \mathbb{Q},] \alpha, \infty[\cap \mathbb{Q})$.

3. The orderings on $\mathbb{R}(\mathrm{x})$

Theorem 3.1. There is a canonical bijection between the set of the orderings on $\mathbb{R}(\mathrm{x})$ and the set of the Dedekind cuts of \mathbb{R}.
Proof. Let \leqslant be an ordering on $\mathbb{R}(\mathrm{x})$. Consider the sets $L=\{v \in \mathbb{R}: v<\mathrm{x}\}$ and $U=\{w \in \mathbb{R}: \mathrm{x}<w\}$. Then $\mathcal{C}_{\mathrm{X}}^{\leqslant}:=(L, U)$ is a Dedekind cut of \mathbb{R}. (Note that if \leqslant is the order defined in 1.1 then $\mathcal{C}_{\mathrm{X}}^{\leqslant}=0_{+}$). So we can define a map
$\{\leqslant: \leqslant$ is an ordering on $\mathbb{R}(\mathrm{x})\} \xrightarrow{f}\{(L, U):(L, U)$ is a Dedekind cut of $\mathbb{R}\}$

$$
\leqslant \quad \mapsto \quad \mathcal{C}_{\mathrm{X}}^{\leqslant}
$$

We now want to find a map
$\{(L, U):(L, U)$ is a Dedekind cut of $\mathbb{R}\} \longrightarrow\{\leqslant: \leqslant$ is an ordering on $\mathbb{R}(\mathrm{x})\}$
which is the inverse of f. Every Dedekind cut of (\mathbb{R}, \leqslant) is of the form $-\infty$, $a_{-}, a_{+},+\infty$, with $a \in \mathbb{R}$. With a change of variable, respectively, $\mathrm{y}:=-1 / \mathrm{x}$, $\mathrm{y}:=a-\mathrm{x}, \mathrm{y}:=\mathrm{x}-a, \mathrm{y}:=1 / \mathrm{x}$, we obtain an ordering on $\mathbb{R}(\mathrm{y})$ such that

$$
0<\mathrm{y}<r \quad \forall r \in \mathbb{R}, r>0
$$

We have seen in 1.3 that there is only one ordering with such a property, so we have a well-defined map from the set of the Dedekind cuts of (\mathbb{R}, \leqslant) into the set of orderings of $\mathbb{R}(\mathrm{x})$. It is precisely the inverse of f.

4. Order preserving embeddings

Definition 4.1. (ordungstreue Einbettung) Let (K, \leqslant) and (F, \leqslant) be ordered fields. An injective homomorphism of fields

$$
\varphi: K \hookrightarrow F
$$

is said to be an order preserving embedding if

$$
a \leqslant b \Rightarrow \varphi(a) \leqslant \varphi(b) \quad \forall a, b \in K
$$

Theorem 4.2 (Hölder). Let (K, \leqslant) be an Archimedean ordered field. Then there is an order preserving embedding

$$
\varphi: K \hookrightarrow \mathbb{R}
$$

Proof. Let $a \in K$. Consider the sets

$$
\left.\left.I_{a}:=\right]-\infty, a\right]_{K} \cap \mathbb{Q} \text { and } F_{a}:=[a, \infty[K \cap \mathbb{Q} .
$$

Then $I_{a} \leqslant F_{a}$ and $I_{a} \cup F_{a}=\mathbb{Q}$. So we can define

$$
\varphi(a):=\sup I_{a}=\inf F_{a} \in \mathbb{R} .
$$

Since K is Archimedean, φ is well-defined. Note that

$$
I_{a}+I_{b}=\left\{x+y: x \in I_{a}, y \in I_{b}\right\} \subseteq I_{a+b}
$$

and

$$
F_{a}+F_{b} \subseteq F_{a+b}
$$

then $\varphi(a)+\varphi(b) \leqslant \varphi(a+b)$ and $\varphi(a)+\varphi(b) \geqslant \varphi(a+b)$. This proves that φ is additive. Similarly one gets $\varphi(a b)=\varphi(a) \varphi(b)$.

