REAL ALGEBRAIC GEOMETRY LECTURE NOTES
 (08: 12/11/09)

SALMA KUHLMANN

Contents

1. Real closure 1
2. Order preserving extensions 2

1. Real closure

Definition 1.1. Let (K, P) be an ordered field. R is a real closure of (K, P) if
(1) R is real closed,
(2) $R \supseteq K, R \mid K$ is algebraic,
(3) $P=\sum R^{2} \cap K$ (i.e. the order on K is the restriction of the unique order R to K).

Theorem 1.2. Every ordered field (K, P) has a real closure.
Proof. Apply Zorn's Lemma to

$$
\mathcal{L}:=\{(L, Q): L \mid K \text { algebraic, } Q \cap K=P\} .
$$

Proposition 1.3. (Corollary to Sturm's Theorem) Let K be a field. Let R_{1}, R_{2} be two real closed fields such that

$$
K \subseteq R_{1} \quad \text { and } \quad K \subseteq R_{2}
$$

with

$$
P:=K \cap \sum R_{1}^{2}=K \cap \sum R_{2}^{2}
$$

(i.e. R_{1} and R_{2} induce the same ordering P on K).

Let $f(\mathrm{x}) \in K[\mathrm{x}]$; then the number of roots of $f(\mathrm{x})$ in R_{1} is equal to the number of roots of $f(\mathrm{x})$ in R_{2}.

2. ORDER PRESERVING EXTENSIONS

Proposition 2.1. Let (K, P) be an ordered field. Let R be a real closed field containing (K, P). Let $K \subseteq L \subseteq R$ be such that $[L: K]<\infty$. Let S be a real closed field with

$$
\varphi:(K, P) \hookrightarrow\left(S, \sum S^{2}\right)
$$

an order preserving embedding. Then φ extends to an order preserving embedding

$$
\psi:\left(L, \sum R^{2} \cap L\right) \hookrightarrow\left(S, \sum S^{2}\right)
$$

Proof. We recall that if (K, P) and (L, Q) are ordered fields, a field homomorphism $\varphi: K \longrightarrow L$ is called order preserving with respect to P and Q if $\varphi(P) \subseteq Q$ (equivalently $P=\varphi^{-1}(Q)$).

By the Theorem of the Primitive Element $L=K(\alpha)$.
Consider $f=\operatorname{MinPol}(\alpha \mid K)$. Since $\alpha \in R, \varphi(f)$ has at least one root β in S,

$$
L:=K(\alpha) \quad \stackrel{\psi}{\longleftrightarrow} \quad \varphi(K)(\beta),
$$

so there is at least one extension of φ from K to L.
Let $\psi_{1}, \ldots, \psi_{r}$ all such extensions of φ to $L=K(\alpha)$, and for a contradiction assume that none of them is order preserving with respect to $Q=L \cap \sum R^{2}$. Then $\exists b_{1}, \ldots, b_{r} \in L, b_{i}>0($ in $R)$ and $\psi_{i}\left(b_{i}\right)<0($ in $S)$ $\forall i=1, \ldots, r$.

Consider $L^{\prime}:=L\left(\sqrt{b_{1}}, \ldots, \sqrt{b_{r}}\right) \subset R$. Since $[L: K]<\infty$, also $\left[L^{\prime}, K\right]<\infty$.
So let τ be an extension of φ from K to L^{\prime}. In particular $\tau_{\left.\right|_{L}}$ is one of the ψ_{i} 's. Say $\tau_{\left.\right|_{L}}=\psi_{1}$.

Now compute for $b_{1} \in L$,

$$
\psi_{1}\left(b_{1}\right)=\tau\left(b_{1}\right)=\tau\left(\left(\sqrt{b_{1}}\right)^{2}\right)=\left(\tau\left(\sqrt{b_{1}}\right)\right)^{2} \in \sum S^{2}
$$

in contradiction with the fact that $\psi_{1}\left(b_{1}\right)<0$.

Theorem 2.2. Let (K, P) be an ordered field and $\left(R, \sum R^{2}\right)$ be a real closure of (K, P). Let $\left(S, \sum S^{2}\right)$ be a real closed field and assume that

$$
\varphi:(K, P) \hookrightarrow\left(S, \sum S^{2}\right)
$$

is an order preserving embeding. Then φ has a uniquely determined extension

$$
\psi:\left(R, \sum R^{2}\right) \hookrightarrow\left(S, \sum S^{2}\right)
$$

Proof. Consider

$$
\mathcal{L}:=\left\{(L, \psi): K \subset L \subset R ; \psi: L \hookrightarrow S, \psi_{\left.\right|_{K}}=\varphi\right\}
$$

Let (L, ψ) be a maximal element. Then by Proposition 2.1 we must have $L=R$.

Therefore we have an order preserving embedding ψ of R extending φ

$$
\psi: R \hookrightarrow S
$$

We want to prove that ψ is unique. We show that $\psi(\alpha) \in S$ is uniquely determined for every $\alpha \in R$.

Let $f=\operatorname{PolMin}(\alpha \mid K)$ and let $\alpha_{1}<\cdots<\alpha_{r}$ all the real roots of f in R. Let $\beta_{1}<\cdots<\beta_{r}$ be all the real roots of f in S. Since $\psi: R \hookrightarrow S$ is order preserving, we must have $\psi\left(\alpha_{i}\right)=\beta_{i}$ for every $i=1, \ldots, r$. In particular $\alpha=\alpha_{j}$ for some $1 \leqslant j \leqslant r$ and $\psi(\alpha)=\beta_{j} \in S$.

Corollary 2.3. Let (K, P) be an ordered field, R_{1}, R_{2} two real closures of (K, P). Then exists a unique

$$
\varphi: R_{1} \longrightarrow R_{2}
$$

K-isomorphism (i.e. with $\varphi_{\left.\right|_{K}}=i d$).

Corollary 2.4. Let R be a real closure of (K, P). Then the only K-automorphism of R is the identity.

Corollary 2.5. Let R be a real closed field, $K \subseteq R$ a subfield. Set $P:=$ $K \cap \sum R^{2}$ the induced order. Then

$$
K^{r a l g}=\{\alpha \in R: \alpha \text { is algebraic over } K\}
$$

is relatively algebraic closed in R and is a real closure of (K, P).
Proof. It is enough to show that $K^{\text {ralg }}$ is real closed.
$K^{\text {ralg }}$ is real because $Q:=K^{\text {ralg }} \cap \sum R^{2}$ is an induced ordering.
Let $a \in Q, a=b^{2}, b \in R$. So $p(\mathrm{x})=\mathrm{x}^{2}-a \in K^{\text {ralg }}[\mathrm{x}]$ has a root in R.
One can see that b is algebraic over K (so $b \in K^{\text {ralg }}$).
Similarly one shows that every odd polynomial with coefficients in $K^{\text {ralg }}$ has a root in $K^{\text {ralg }}$.

Corollary 2.6. Let (K, P) be an ordered field, S a real closed field and $\varphi:(K, P) \hookrightarrow S$ an order preserving embedding. Let $L \mid K$ an algebraic extension. Then there is a bijective correspondence

$$
\begin{gathered}
\{\text { extensions } \psi: L \rightarrow S \text { of } \varphi\} \quad \longrightarrow\{\text { extensions } Q \text { of } P \text { to } L\} \\
\psi \quad \mapsto \quad \psi^{-1}\left(\sum S^{2}\right)
\end{gathered}
$$

Proof.
(\Rightarrow) Let $\psi: L \hookrightarrow S$ an extension of φ. Then indeed $Q:=\psi^{-1}\left(\sum S^{2}\right)$ is an ordering on L. Furthermore $\psi^{-1}\left(\sum S^{2}\right) \cap K=\varphi^{-1}\left(\sum S^{2}\right)=P$. So the extension ψ induces the extension Q.
(\Leftarrow) Conversely assume that Q is an extension of P from K to $L(Q \cap K=$ $P)$. Note that if R is a real closure of (L, Q) then R is a real closure of (K, P) as well.

Now apply Theorem 2.2 to extend φ to $\sigma: R \rightarrow S$. Set $\psi:=\sigma_{\left.\right|_{L}}$ which is order preserving with respect to Q. So the map is welldefined and surjective. To see that it is also injective, assume

$$
\psi_{1}: L \longrightarrow S, \quad \psi_{2}: L \longrightarrow S, \quad \psi_{1_{\left.\right|_{K}}}=\psi_{2_{\left.\right|_{K}}}=\varphi
$$

which induce the same order

$$
Q=\psi_{1}^{-1}\left(\sum S^{2}\right)=\psi_{2}^{-1}\left(\sum S^{2}\right)
$$

on L. Let R be the real closure of (L, Q). Apply Theorem 2.2 to ψ_{1} and ψ_{2} to get uniquely determined extensions

$$
\sigma_{1}: R \longrightarrow S, \quad \sigma_{2}: R \longrightarrow S,
$$

of ψ_{1} and ψ_{2} respectively.
But now $\sigma_{1_{\mid K}}=\sigma_{2_{K}}=\varphi$. By the uniqueness part of Theorem 2.2 we get $\sigma_{1}=\sigma_{2}$ and a fortiori $\psi_{1}=\psi_{2}$.

Corollary 2.7. Let (K, P) be an ordered field, R a real closure, $[L: K]<\infty$. Let $L=K(\alpha), f=\operatorname{MinPol}(\alpha \mid K)$. Then there is a bijection

$$
\{\text { roots of } f \text { in } R\} \longrightarrow\{\text { extensions } Q \text { of } P \text { to } L\} \text {. }
$$

Proof. If β is a root we consider the K-embedding

$$
\varphi_{\alpha}: L \hookrightarrow R
$$

such that $\varphi_{\alpha}(\alpha)=\beta$. Set $Q:=\varphi^{-1}\left(\sum R^{2}\right)$ ordering on L extending P.
Example 2.8. $K=\mathbb{Q}(\sqrt{2})$ has 2 orderings $P_{1} \neq P_{2}$, with $\sqrt{2} \in P_{1}, \sqrt{2} \notin$ P_{2}. The Minimum Polynomial of $\sqrt{2}$ over \mathbb{Q} is $p(\mathrm{x})=\mathrm{x}^{2}-2$.

