REAL ALGEBRAIC GEOMETRY LECTURE NOTES
 (12 Continued: 26/11/2009)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

Recall. Let R be a real closed field, $a \in R$. Define

$$
\operatorname{sign}(a):=\left\{\begin{aligned}
1 & \text { if } a>0 \\
0 & \text { if } a=0 \\
-1 & \text { if } \quad a<0
\end{aligned}\right.
$$

The Tarski-Seidenberg Principle is the following result.
Theorem 1. Let $f_{i}(\underline{T}, X)=h_{i, m_{i}}(\underline{T}) X^{m_{i}}+\ldots+h_{i, 0}(\underline{T})$ for $i=1, \ldots, s$ be a sequence of polynomials in $\mathrm{n}+1$ variables $\left(\underline{T}=\left(T_{1}, \ldots, T_{n}\right), X\right)$ with coefficients in \mathbb{Z}. Let ϵ be a function from $\{1, \ldots, s\}$ to $\{-1,0,1\}$. Then there exists a finite boolean combination $B(\underline{T}):=S_{1}(\underline{T}) \vee \ldots \vee S_{p}(\underline{T})$ of polynomial equations and inequalities in the variables T_{1}, \ldots, T_{n} with coefficients in \mathbb{Z} such that for every real closed field R and for every $\underline{t} \in R^{n}$, the system

$$
\left\{\begin{array}{c}
\operatorname{sign}\left(f_{1}(\underline{t}, X)\right)=\epsilon(1) \\
\vdots \\
\operatorname{sign}\left(f_{s}(\underline{t}, X)\right)=\epsilon(s)
\end{array}\right.
$$

has a solution $x \in R$ if and only if $B(\underline{t})$ holds true in R .
Notation I. Let $f_{1}(X), \ldots, f_{s}(X)$ be a sequence of polynomials in $\mathrm{R}[\mathrm{X}]$. Let $x_{1}<\ldots<x_{N}$ be the roots in R of all f_{i} that are not identically zero.

Set $x_{0}:=-\infty, x_{N+1}:=+\infty$
Remark 1. Let $m:=\max \left(\operatorname{deg} f_{i}, i=1, \ldots, s\right)$. Then $N \leq s m$.
Set $\left.I_{k}:=\right] x_{k}, x_{k+1}[, k=0, \ldots, N$
Remark 2. $\operatorname{sign}\left(f_{i}(x)\right)$ is constant on I_{k}, for each $i \in 1, \ldots, s$, for each $k \in 0, \ldots, N$.

Set $\operatorname{sign}\left(f_{i}\left(I_{k}\right)\right):=\operatorname{sign}\left(f_{i}(x)\right), x \in I_{k}$
Notation II. Let $\operatorname{SIG} N_{R}\left(f_{1}, \ldots, f_{s}\right)$ be the matrix with s rows and $2 N+1$ columns whose $i^{\text {th }}$ row (for $i=\{1, \ldots, s\}$) is

$$
\operatorname{sign}\left(f_{i}\left(I_{0}\right)\right), \operatorname{sign}\left(f_{i}\left(x_{1}\right)\right), \operatorname{sign}\left(f_{i}\left(I_{1}\right)\right), \ldots, \operatorname{sign}\left(f_{i}\left(x_{N}\right)\right), \operatorname{sign}\left(f_{i}\left(I_{N}\right)\right)
$$

i.e. $S I G N_{R}\left(f_{1}, \ldots, f_{s}\right)$ is an $s \times(2 N+1)$ matrix with coefficients in $\{-1,0,1\}$ and
$\operatorname{SIGN_{R}}\left(f_{1}, \ldots, f_{s}\right):=\left(\begin{array}{ccccc}\operatorname{sign} f_{1}\left(I_{0}\right) & \operatorname{sign} f_{1}\left(x_{1}\right) & \ldots & \operatorname{sign} f_{1}\left(x_{N}\right) & \operatorname{sign} f_{1}\left(I_{N}\right) \\ \operatorname{sign} f_{2}\left(I_{0}\right) & \operatorname{sign} f_{2}\left(x_{1}\right) & \ldots & \operatorname{sign} f_{2}\left(x_{N}\right) & \operatorname{signf}_{2}\left(I_{N}\right) \\ \vdots & \vdots & & \vdots & \vdots \\ \operatorname{sign} f_{s}\left(I_{0}\right) & \operatorname{sign} f_{s}\left(x_{1}\right) & \ldots & \operatorname{sign} f_{s}\left(x_{N}\right) & \operatorname{sign} f_{s}\left(I_{N}\right)\end{array}\right)$
Remark 3. Let $f_{1}, \ldots, f_{s} \in R[X]$ and $\epsilon:\{1, \ldots, s\} \rightarrow\{-1,0,+1\}$. The system

$$
\left\{\begin{array}{c}
\operatorname{sign}\left(f_{1}(X)\right)=\epsilon(1) \\
\vdots \\
\operatorname{sign}\left(f_{s}(X)\right)=\epsilon(s)
\end{array}\right.
$$

has a solution $x \in R$ if and only if one column of $\operatorname{SIGN} N_{R}\left(f_{1}, \ldots, f_{s}\right)$ is precisely the matrix $\left[\begin{array}{c}\epsilon(1) \\ \vdots \\ \epsilon(s)\end{array}\right]$.

Notation III. Let $M_{P \times Q}:=$ the set of $P \times Q$ matrices with coefficients in $\{-1,0,+1\}$.

Set $W_{s, m}:=$ the disjoint union of $M_{s \times(2 l+1)}$, for $l=0, \ldots, s m$.
Notation IV. Let $\epsilon:\{1, \ldots, s\} \rightarrow\{-1,0,1\}$. Set

$$
W(\epsilon)=\left\{M \in W_{s, m}: \text { one column of } M \text { is }\left[\begin{array}{c}
\epsilon(1) \\
\vdots \\
\epsilon(s)
\end{array}\right]\right\} \subseteq W_{s, m}
$$

Lemma 2. (Reformulation of remark 3 using notation IV) Let $\epsilon:\{1, \ldots, s\} \rightarrow$ $\{-1,0,+1\}, R$ real closed field and $f_{1}(X), \ldots, f_{s}(X) \in R[X]$ of degree $\leq m$. Then the system

$$
\left\{\begin{array}{c}
\operatorname{sign}\left(f_{1}(X)\right)=\epsilon(1) \\
\vdots \\
\operatorname{sign}\left(f_{s}(X)\right)=\epsilon(s)
\end{array}\right.
$$

has a solution $x \in R$ if and only if $S I G N_{R}\left(f_{1}, \ldots, f_{s}\right) \in W(\epsilon)$.
By Lemma 2 (setting $W^{\prime}=W(\epsilon)$), we see that the proof of Theorem 1 reduces to showing the following proposition:

Main Proposition 3. Let $f_{i}(\underline{T}, X):=h_{i, m_{i}}(\underline{T}) X^{m_{i}}+\ldots+h_{i, 0}(\underline{T})$ for $i=1, \ldots, s$ be a sequence of polynomials in $\mathrm{n}+1$ variables with coefficients in \mathbb{Z}, and let $m:=\max \left\{m_{i} \mid i=1, \ldots, s\right\}$. Let W^{\prime} be a subset of $W_{s, m}$. Then there exists a boolean combination $B(\underline{T})=S_{1}(\underline{T}) \vee \ldots \vee S_{p}(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z}, such that, for every real closed field R and every $\underline{t} \in R^{n}$, we have

$$
S I G N_{R}\left(f_{1}(\underline{t}, X), \ldots, f_{s}(\underline{t}, X) \in W^{\prime} \Leftrightarrow B(\underline{t}) \text { holds true in } \mathrm{R} .\right.
$$

The proof of the main Proposition will follow by induction from the next main lemma, where we will show that $\operatorname{SIG} N_{R}\left(f_{1}, \ldots, f_{s}\right)$ is completely determined by the " $S I G N_{R}$ " of a (possibly) longer but simpler sequence of polynomials, i.e. $S I G N_{R}\left(f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}, g_{1}, \ldots, g_{s}\right)$, where $f_{s}^{\prime}=$ the derivative of f_{s}, and g_{1}, \ldots, g_{s} are the remainders of the euclidean division of f_{s} by $f_{1}, \ldots, f_{s-1}, f_{s}^{\prime}$, respectively.

First we will state and prove the lemma and then prove the proposition.

