REAL ALGEBRAIC GEOMETRY LECTURE NOTES (15: 08/12/09)

SALMA KUHLMANN

Contents

1. Algebraic sets and constructible sets 1
2. Topology 2
3. Semialgebraic functions 3
4. Semialgebraic homeomorphisms 4

1. Algebraic sets and constructible sets

Definition 1.1. Let K be a field. Let $f_{1}, \ldots, f_{k} \in K[\underline{\mathrm{x}}]=K\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$. A set of the form

$$
Z\left(f_{1}, \ldots, f_{k}\right):=\left\{\underline{x} \in K^{n}: f_{1}(\underline{x})=\cdots=f_{k}(\underline{x})=0\right\}
$$

is called an algebraic set.
Definition 1.2. A subset $C \subseteq K^{n}$ is constructible if it is a finite Boolean combination of algebraic sets.

Remark 1.3.

(1) A constructible subset of K is either finite or cofinite.
(2) Let $K=\mathbb{R}$ and consider the algebraic set

$$
Z=\left\{(x, y) \in K^{2}: x^{2}-y=0\right\} .
$$

Its image under the projection $\pi(x, y)=y$ is $\pi(Z)=[0, \infty[$ which is neither finite nor cofinite.

This shows that in general a Boolean conbination of algebraic sets is not closed under projections.

Definition 1.4. A function $F: K^{n} \rightarrow K^{m}$ is a polynomial map if there are polynomials $F_{1}, \ldots, F_{m} \in K\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ such that for every $\underline{x} \in K^{n}$,

$$
F(\underline{x})=\left(F_{1}(\underline{x}), \ldots, F_{m}(\underline{x})\right) \in K^{m} .
$$

Example 1.5. The projection map

$$
\begin{array}{rccc}
\prod_{n}: & K^{n+m} & \longrightarrow & K^{n} \\
\left(x_{1}, \ldots, x_{n+m}\right) & \mapsto & \left(x_{1}, \ldots, x_{n}\right)
\end{array}
$$

is a polynomial map, where for every $i, 1 \leqslant i \leqslant n$,

$$
P_{i}\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)=x_{i}
$$

and $\prod_{n}=\left(P_{1}, \ldots, P_{n}\right)$.
By Chevalley's Theorem (Quantifier elimination for algebraically closed fields), if K is an algebraically closed field, then the image of a constructible set over K under a polynomial map is constructible (in particular under projections).

Let R be now a real closed field.

Remark 1.6.

(1) A semialgebraic subset of R^{n} is the projection of an algebraic subset of R^{n+m} for some $m \in \mathbb{N}$, e.g. the semialgebraic set

$$
\left\{\underline{x} \in R^{n}: f_{1}(\underline{x})=\cdots=f_{l}(\underline{x})=0, g_{1}(\underline{x})>0, \ldots, g_{m}(\underline{x})>0\right\}
$$

is the projection of the algebraic set

$$
\left\{(\underline{x}, \underline{y}) \in R^{n+m}: f_{1}(\underline{x})=\cdots=f_{l}(\underline{x})=0, y_{1}^{2} g_{1}(\underline{x})=1, \ldots, y_{m}^{2} g_{m}(\underline{x})=1\right\}
$$

(2) Every semialgebraic subset of R^{n} is in fact the projection of an algebraic subset of R^{n+1} (Motzkin, The real solution set of a system of algebraic inequalities is the projection of a hypersurface in one more dimension, 1970 Inequalities, II Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967 pp. 251-254 Academic Press, New York).

2. Topology

For $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$, we have the norm $\|\underline{x}\|:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$.
Let $r \in R, r>0$.

$$
\begin{aligned}
& B_{n}(\underline{x}, r)=\left\{\underline{y} \in R^{n}:\|\underline{y}-\underline{x}\|<r\right\} \text { is an open ball. } \\
& \bar{B}_{n}(\underline{x}, r)=\left\{\underline{y} \in R^{n}:\|\underline{y}-\underline{x}\| \leqslant r\right\} \quad \text { is a closed ball. } \\
& S^{n-1}(\underline{x}, r)=\left\{\underline{y} \in R^{n}:\|\underline{y}-\underline{x}\|=r\right\} \quad \text { is a } n-1 \text {-sphere. } \\
& S^{n-1}=S^{n-1}(\underline{0}, 1) \quad \underline{0} \in R^{n} .
\end{aligned}
$$

Exercise 2.1.

- $B_{n}(\underline{x}, r), \bar{B}_{n}(\underline{x}, r), S^{n-1}(\underline{x}, r)$ are semialgebraic.
- Polynomials are continuous with respect to the Euclidean topology.
- The open balls form a basis for the Euclidean topology = norm topology $=$ interval topology.
- The closure and the interior of a semialgebraic set are semialgebraic.

Remark 2.2. It is not true that the closure of a semialgebraic set is obtained by relaxing the inequalities! For instance

$$
\{x>0\} \cap\{x<0\}=\emptyset .
$$

3. Semialgebraic functions

Definition 3.1. Let $A \subseteq R^{m}, B \subseteq R^{n}$ be two semialgebraic sets. A function

$$
f: A \longrightarrow B
$$

is semialgebraic if its graph

$$
\Gamma_{f}=\{(\underline{x}, \underline{y}) \in A \times B: \underline{y}=f(\underline{x})\}
$$

is a semialgebraic subset of R^{m+n}.

Example 3.2.

(1) Any polynomial mapping $f: A \rightarrow B$ between semialgebraic sets is semialgebraic.
(2) More generally, any regular rational mapping $f: A \rightarrow B$ (i.e. all coordinates are rational functions whose denominators do not vanish on A) is semialgebraic.
(3) If A is a semialgebraic set and $f: A \rightarrow R, g: A \rightarrow R$ are semialgebraic maps, then $|f|, \max (f, g), \min (f, g)$ are semialgebraic maps.
(4) If A is a semialgebraic set and $f: A \rightarrow R$ is a semialgebraic map with $f \geqslant 0$ on A, then \sqrt{f} is a semialgebraic map.

Proposition 3.3.

(1) The composition $g \circ f$ of semialgebraic maps f and g is semialgebraic.
(2) Let $f: A \rightarrow B$ and $g: C \rightarrow D$ semialgebraic maps. Then the map

$$
\begin{array}{rllc}
f \times g: & A \times C & \longrightarrow & B \times D \\
& (\underline{x}, \underline{y}) & \mapsto & (f(\underline{x}), g(\underline{y}))
\end{array}
$$

is semialgebraic.
(3) Let $f: A \rightarrow B$ be semialgebraic.
(i) $S \subseteq A$ semialgebraic $\Rightarrow f(S)$ is semialgebraic.
(ii) $T \subseteq B$ semialgebraic $\Rightarrow f^{-1}(T)$ is semialgebraic.
(4) Let A be a semialgebraic set. Then

$$
\mathcal{S}(A)=\{f: A \rightarrow R: f \text { is semialgebraic }\}
$$

is a commutative ring under pointwise addition and pointwise multiplication.

Proposition 3.4. Let $A \subseteq R^{n}$ be a non-empty semialgebraic set.
(i) For every $\underline{x} \in R^{n}$ the distance between \underline{x} and A :

$$
\operatorname{dist}(\underline{x}, A):=\inf (\{\|\underline{x}-\underline{y}\|: \underline{y} \in A\})
$$

is well-defined.
(ii) The function

$$
\begin{array}{lllc}
\text { dist: } & R^{n} & \longrightarrow & R \\
& \underline{x} & \longmapsto & \operatorname{dist}(\underline{x}, A)
\end{array}
$$

is continuous semialgebraic vanishing on the closure of A and positive elsewhere.

4. SEMIALGEBRAIC HOMEOMORPHISMS

We have that every semialgebraic subset of R can be decomposed as the union of finitely many points and open intervals. We shall generalize this to higher dimension:

Definition 4.1. Let A, B be semialgebraic sets and $f: A \rightarrow B$. We say that f is a semialgebraic homeomorphism if
(1) f is a bijection,
(2) f and f^{-1} are continuous and semialgebraic.

Definition 4.2. Let A, B be semialgebraic sets. We say that they are semialgebraically homeomorphic if there is a semialgebraic homeomorphism $f: A \rightarrow B$.

Our aim is to show that every semialgebraic set can be decomposed as the disjoint union of finetely many pieces which are semialgebraically homeomorphic to open hypercubes $(0,1)^{d}$ (possibly for different $d \in \mathbb{N}$).

