REAL ALGEBRAIC GEOMETRY LECTURE NOTES (16: 10/12/09)

SALMA KUHLMANN

Contents

1. Cylindrical algebraic decomposition

Let R be a real closed field.

1. Cylindrical algebraic decomposition

Theorem 1.1. Let $\underline{\mathrm{x}}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$. Let $f_{1}(\underline{\mathrm{x}}, \mathrm{y}), \ldots, f_{s}(\underline{\mathrm{x}}, \mathrm{y})$ be polynomials in $n+1$ variables with coefficients in R. Then there exixts a partition of R^{n} into a finite number of semialgebraic sets

$$
R^{n}=A_{1} \dot{\cup} \ldots \dot{\cup} A_{m}
$$

and for each $i=1, \ldots, m$ there exists a finite number (possibly 0) of continuous semialgebraic functions $\xi_{i 1}, \ldots, \xi_{i l_{i}}$ defined on A_{i} with

$$
\begin{gathered}
\xi_{i 1}<\cdots<\xi_{i l_{i}} \\
\xi_{i j}: A_{i} \longrightarrow R
\end{gathered}
$$

and $\xi_{i j}(\underline{x})<\xi_{i j+1}(\underline{x})$ for all $\underline{x} \in A_{i}$, for all $j=1, \ldots, l_{i}$, such that
(i) for each $\underline{x} \in A_{i},\left\{\xi_{i 1}(\underline{x}), \ldots, \xi_{i l_{i}}(\underline{x})\right\}=\{$ roots of those polynomials among $f_{1}(\underline{x}, \mathrm{y}), \ldots, f_{s}(\underline{x}, \mathrm{y})$ which are not identically zero\};
(ii) for each $\underline{x} \in A_{i}$ and $y \in R, \operatorname{sign}\left(f_{1}(\underline{x}, y)\right), \ldots, \operatorname{sign}\left(f_{s}(\underline{x}, y)\right)$ depend only on $\operatorname{sign}\left(y-\xi_{i 1}\right), \ldots, \operatorname{sign}\left(y-\xi_{i l_{i}}\right)$.
We will prove this Theorem using the following Proposition:
Proposition 1.2. (Main proposition "with coefficients")
Let $f_{1}(\underline{\mathrm{x}}, \mathrm{y}), \ldots, f_{s}(\underline{\mathrm{x}}, \mathrm{y})$ be polynomials in $n+1$ variables with coefficients in R. Let $q:=\max _{i=1, \ldots, s}\left\{\operatorname{deg}\right.$ in y of $\left.f_{i}(\underline{\mathrm{x}}, \mathrm{y})\right\}$ and $w \in W_{s, q}$.

Then there exists a boolean combination $B_{w}(\underline{\mathrm{x}})$ of polynomial equations and inequalities in the variables $\underline{\mathrm{x}}$ with coefficients in R such that for any $\underline{x} \in R^{n}$,

$$
\operatorname{sign}_{R}\left(f_{1}(\underline{x}, \mathrm{y}), \ldots, f_{s}(\underline{x}, \mathrm{y})\right)=w \Leftrightarrow B_{w}(\underline{x}) \text { is satisfied in } R .
$$

Proof. Let $\underline{a} \in R^{p}$ be the list of coefficients of the polynomials f_{1}, \ldots, f_{s}. Then for every $k=1, \ldots, s$,

$$
f_{k}(\underline{\mathrm{x}}, \mathrm{y})=F_{k}(\underline{a}, \underline{\mathrm{x}}, \mathrm{y})
$$

where $F_{k}(\underline{\mathrm{t}}, \underline{\mathrm{x}}, \mathrm{y}) \in \mathbb{Z}[\underline{\mathrm{t}}, \underline{\mathrm{x}}, \mathrm{y}]$ is a polynomial in $p+n+1$ variables.
Then there is a boolean combination $B_{w}^{*}(\underline{\mathrm{t}}, \underline{\mathrm{x}})$ of polynomial equations and inequalities in the variables ($\underline{t}, \underline{x}$) with coefficients in \mathbb{Z} such that, for every $(\underline{t}, \underline{x}) \in R^{p+n}$, we have

$$
\operatorname{sign}_{R}\left(F_{1}(\underline{t}, \underline{x}, \mathrm{y}), \ldots, F_{s}(\underline{t}, \underline{x}, \mathrm{y})\right)=w \Leftrightarrow B_{w}^{*}(\underline{t}, \underline{x}) \text { holds. }
$$

Now set $B_{w}(\mathrm{x})=B_{w}^{*}(\underline{a}, \underline{\mathrm{x}})$.
Let us prove now Theorem 1.1:
Proof of the Theorem. Without loss of generality we may assume that the set $\left\{f_{1}, \ldots, f_{s}\right\}$ is closed under derivation with respect to the variable y (because we can always remove the functions $\xi_{i j}$ that do not give the roots of the polynomials belonging to the initial family, and the conclusions of the theorem still hold with the remaining $\xi_{i j}$'s).

As in the previous Proposition, let $q:=\max _{i=1, \ldots, s}\left\{\operatorname{deg}\right.$ in y of $\left.f_{i}(\underline{x}, y)\right\}$.
Now $W_{s, q}$ is a finite set with

$$
\left|W_{s, q}\right|=3^{s q}
$$

For $w \in W_{s, q}$, define:

$$
\begin{aligned}
A_{w}: & =\left\{\underline{x} \in R^{n}: B_{w}(\underline{x}) \text { is satisfied }\right\} \\
& =\left\{\underline{x} \in R^{n}: \operatorname{sign}_{R}\left(f_{1}(\underline{x}, \mathrm{y}), \ldots, f_{s}(\underline{x}, \mathrm{y})\right)=w\right\}
\end{aligned}
$$

Observe that A_{w} is a semialgebraic set of R^{n}. Let A_{1}, \ldots, A_{m} be the semialgebraic sets among the A_{w} that are non-empty, i.e.

$$
\left\{A_{1}, \ldots, A_{m}\right\}=\left\{A_{w}: w \in W_{s, q} \text { and } A_{w} \neq \emptyset\right\}
$$

Note that by definition of A_{w} we have that A_{1}, \ldots, A_{m} form a partition of R^{n} (they are all disjoint because $w_{1} \neq w_{2} \Rightarrow A_{w_{1}} \cap A_{w_{2}}=\emptyset$, and for every $\underline{x} \in R^{n}, \underline{x} \in A_{w}$ with $\left.w=\operatorname{sign}_{R}\left(f_{1}(\underline{x}, \mathrm{y}), \ldots, f_{s}(\underline{x}, \mathrm{y})\right)\right)$.

Note also that by definition of $A_{w}, \operatorname{sign}_{R}\left(f_{1}(\underline{x}, \mathrm{y}), \ldots, f_{s}(\underline{x}, \mathrm{y})\right)=w \in$ $W_{q, s}$ is constant on each A_{i}. In other words by definition of w there is a number $l_{i} \leqslant s q$ such that, for each $\underline{x} \in A_{i}$, the polynomials among $f_{1}(\underline{x}, \mathrm{y}), \ldots, f_{s}(\underline{x}, \mathrm{y})$ which are not identically zero have altoghether l_{i} roots

$$
\xi_{i 1}(\underline{x})<\cdots<\xi_{i l_{i}}(\underline{x})
$$

and moreover for every $k=1, \ldots, s$ the signs

$$
\begin{aligned}
\operatorname{sign}\left(f_{k}\left(\underline{x}, \xi_{i j}(\underline{x})\right)\right), & j=1, \ldots, l_{i} \\
\operatorname{sign}\left(f_{k}(\underline{x},] \xi_{i j}(\underline{x}), \xi_{i j+1}(\underline{x})[)\right), & j=0, \ldots, l_{i}
\end{aligned}
$$

depend only on i and not on $\underline{x} \in A_{i}$ (with the convention $\xi_{i 0}=-\infty$ and $\left.\xi_{i l_{i+1}}=+\infty\right)$.

Now it remains to show that each $\xi_{i j}$ is semialgebraic and continuous.
The graph of $\xi_{i j}$ is

$$
\begin{gathered}
\Gamma\left(\xi_{i j}\right)=\left\{(\underline{x}, y) \in A_{i} \times R: \exists\left(y_{1}, \ldots, y_{l_{i}}\right) \in R^{l_{i}}\left(\prod_{k} f_{k}\left(\underline{x}, y_{1}\right)=\cdots=\prod_{k} f_{k}\left(\underline{x}, y_{l_{i}}\right)=0\right.\right. \\
\text { and } \left.\left.y_{1}<\cdots<y_{l_{i}} \text { and } y=y_{j}\right)\right\}
\end{gathered}
$$

(where k ranges over the subscripts of those polynomials $f_{k}(\underline{x}, \mathrm{y})$ that are not identically zero on A_{i}), and therefore the function $\xi_{i j}$ is semialgebraic.

To show the continuity of $\xi_{i j}$, fix $\underline{x}_{0} \in A_{i}$. Then $y_{j}=\xi_{i j}\left(\underline{x}_{0}\right)$ is a simple root of at least one of $\left\{f_{1}\left(\underline{x}_{0}, \mathrm{y}\right), \ldots, f_{s}\left(\underline{x}_{0}, \mathrm{y}\right)\right\}$ (closure under derivatives of the family), say of $f_{1}\left(\underline{x}_{0}, y\right)$. For $\varepsilon \in R$ small enough,

$$
f_{1}\left(\underline{x}_{0}, y_{j}-\varepsilon\right) f_{1}\left(\underline{x}_{0}, y_{j}+\varepsilon\right)<0
$$

Hence, in a neighbourhood U of \underline{x}_{0} in R^{n}, we have

$$
\forall \underline{x} \in U \quad f_{1}\left(\underline{x}, y_{j}-\varepsilon\right) f_{1}\left(\underline{x}, y_{j}+\varepsilon\right)<0
$$

and $f_{1}(\underline{x}, \mathrm{y})$ has a root between $y_{j}-\varepsilon$ and $y_{j}+\varepsilon$ is $\xi_{i j}(\underline{x})$. This proves that $\xi_{i j}$ is continuous.

