REAL ALGEBRAIC GEOMETRY LECTURE NOTES (16: 10/12/09)

SALMA KUHLMANN

Contents

1. Cylindrical algebraic decomposition

1

Let R be a real closed field.

1. Cylindrical algebraic decomposition

Theorem 1.1. Let $\underline{\mathbf{x}} = (\mathbf{x}_1, \ldots, \mathbf{x}_n)$. Let $f_1(\underline{\mathbf{x}}, \mathbf{y}), \ldots, f_s(\underline{\mathbf{x}}, \mathbf{y})$ be polynomials in n + 1 variables with coefficients in R. Then there exists a partition of R^n into a finite number of semialgebraic sets

$$R^n = A_1 \ \dot{\cup} \ \cdots \ \dot{\cup} \ A_m$$

and for each i = 1, ..., m there exists a finite number (possibly 0) of continuous semialgebraic functions $\xi_{i1}, ..., \xi_{il_i}$ defined on A_i with

$$\xi_{i1} < \dots < \xi_{il_i}$$

$$\xi_{ij} \colon A_i \longrightarrow R$$

and $\xi_{ij}(\underline{x}) < \xi_{ij+1}(\underline{x})$ for all $\underline{x} \in A_i$, for all $j = 1, \ldots, l_i$, such that

- (i) for each $\underline{x} \in A_i$, $\{\xi_{i1}(\underline{x}), \dots, \xi_{il_i}(\underline{x})\} = \{\text{roots of those polynomials} among <math>f_1(\underline{x}, \mathbf{y}), \dots, f_s(\underline{x}, \mathbf{y}) \text{ which are not identically zero}\};$
- (ii) for each $\underline{x} \in A_i$ and $y \in R$, $\operatorname{sign}(f_1(\underline{x}, y)), \ldots, \operatorname{sign}(f_s(\underline{x}, y))$ depend only on $\operatorname{sign}(y - \xi_{i1}), \ldots, \operatorname{sign}(y - \xi_{il_i})$.

We will prove this Theorem using the following Proposition:

Proposition 1.2. (Main proposition "with coefficients") Let $f_1(\underline{\mathbf{x}}, \mathbf{y}), \ldots, f_s(\underline{\mathbf{x}}, \mathbf{y})$ be polynomials in n+1 variables with coefficients in R. Let $q := \max_{i=1,\ldots,s} \{ \deg \text{ in } \mathbf{y} \text{ of } f_i(\underline{\mathbf{x}}, \mathbf{y}) \}$ and $w \in W_{s,q}$.

Then there exists a boolean combination $B_w(\underline{\mathbf{x}})$ of polynomial equations and inequalities in the variables $\underline{\mathbf{x}}$ with coefficients in R such that for any $\underline{x} \in R^n$,

$$\operatorname{sign}_R(f_1(\underline{x}, \mathbf{y}), \dots, f_s(\underline{x}, \mathbf{y})) = w \iff B_w(\underline{x}) \text{ is satisfied in } R.$$

Proof. Let $\underline{a} \in \mathbb{R}^p$ be the list of coefficients of the polynomials f_1, \ldots, f_s . Then for every $k = 1, \ldots, s$,

$$f_k(\underline{\mathbf{x}}, \mathbf{y}) = F_k(\underline{a}, \underline{\mathbf{x}}, \mathbf{y}),$$

where $F_k(\underline{t}, \underline{x}, y) \in \mathbb{Z}[\underline{t}, \underline{x}, y]$ is a polynomial in p + n + 1 variables.

Then there is a boolean combination $B_w^*(\underline{t}, \underline{x})$ of polynomial equations and inequalities in the variables $(\underline{t}, \underline{x})$ with coefficients in \mathbb{Z} such that, for every $(\underline{t}, \underline{x}) \in \mathbb{R}^{p+n}$, we have

$$\operatorname{sign}_{R}(F_{1}(\underline{t}, \underline{x}, \mathbf{y}), \dots, F_{s}(\underline{t}, \underline{x}, \mathbf{y})) = w \iff B_{w}^{*}(\underline{t}, \underline{x}) \text{ holds.}$$

Now set $B_w(\mathbf{x}) = B_w^*(\underline{a}, \underline{\mathbf{x}}).$

Let us prove now Theorem 1.1:

Proof of the Theorem. Without loss of generality we may assume that the set $\{f_1, \ldots, f_s\}$ is closed under derivation with respect to the variable y (because we can always remove the functions ξ_{ij} that do not give the roots of the polynomials belonging to the initial family, and the conclusions of the theorem still hold with the remaining ξ_{ij} 's).

As in the previous Proposition, let $q := \max_{i=1,\dots,s} \{ \text{deg in } y \text{ of } f_i(\underline{x}, y) \}$. Now $W_{s,q}$ is a finite set with

$$|W_{s,q}| = 3^{sq}$$
.

For $w \in W_{s,q}$, define:

$$A_w := \{ \underline{x} \in \mathbb{R}^n : B_w(\underline{x}) \text{ is satisfied } \}$$

= $\{ \underline{x} \in \mathbb{R}^n : \operatorname{sign}_B(f_1(\underline{x}, \mathbf{y}), \dots, f_s(\underline{x}, \mathbf{y})) = w \}.$

Observe that A_w is a semialgebraic set of \mathbb{R}^n . Let A_1, \ldots, A_m be the semialgebraic sets among the A_w that are non-empty, i.e.

$$\{A_1, \ldots, A_m\} = \{A_w : w \in W_{s,q} \text{ and } A_w \neq \emptyset\}.$$

Note that by definition of A_w we have that A_1, \ldots, A_m form a partition of R^n (they are all disjoint because $w_1 \neq w_2 \Rightarrow A_{w_1} \cap A_{w_2} = \emptyset$, and for every $\underline{x} \in R^n, \underline{x} \in A_w$ with $w = \operatorname{sign}_R(f_1(\underline{x}, y), \ldots, f_s(\underline{x}, y)))$.

Note also that by definition of A_w , $\operatorname{sign}_R(f_1(\underline{x}, y), \ldots, f_s(\underline{x}, y)) = w \in W_{q,s}$ is constant on each A_i . In other words by definition of w there is a number $l_i \leq sq$ such that, for each $\underline{x} \in A_i$, the polynomials among $f_1(\underline{x}, y), \ldots, f_s(\underline{x}, y)$ which are not identically zero have altographeter l_i roots

$$\xi_{i1}(\underline{x}) < \cdots < \xi_{il_i}(\underline{x})$$

and moreover for every $k = 1, \ldots, s$ the signs

$$\operatorname{sign}(f_k(\underline{x}, \xi_{ij}(\underline{x}))), \quad j = 1, \dots, l_i$$

$$\operatorname{sign}(f_k(\underline{x},] \xi_{ij}(\underline{x}), \xi_{ij+1}(\underline{x}) [)), \quad j = 0, \dots, l_i$$

 $\mathbf{2}$

depend only on *i* and not on $\underline{x} \in A_i$ (with the convention $\xi_{i0} = -\infty$ and $\xi_{il_{i+1}} = +\infty$).

Now it remains to show that each ξ_{ij} is semialgebraic and continuous. The graph of ξ_{ij} is

$$\Gamma(\xi_{ij}) = \{ (\underline{x}, y) \in A_i \times R : \exists (y_1, \dots, y_{l_i}) \in R^{l_i} (\prod_k f_k(\underline{x}, y_1) = \dots = \prod_k f_k(\underline{x}, y_{l_i}) = 0$$

and $y_1 < \dots < y_{l_i}$ and $y = y_j \}$

(where k ranges over the subscripts of those polynomials $f_k(\underline{x}, \mathbf{y})$ that are not identically zero on A_i), and therefore the function ξ_{ij} is semialgebraic.

To show the continuity of ξ_{ij} , fix $\underline{x}_0 \in A_i$. Then $y_j = \xi_{ij}(\underline{x}_0)$ is a simple root of at least one of $\{f_1(\underline{x}_0, \mathbf{y}), \ldots, f_s(\underline{x}_0, \mathbf{y})\}$ (closure under derivatives of the family), say of $f_1(\underline{x}_0, \mathbf{y})$. For $\varepsilon \in R$ small enough,

$$f_1(\underline{x}_0, y_j - \varepsilon) f_1(\underline{x}_0, y_j + \varepsilon) < 0.$$

Hence, in a neighbourhood U of \underline{x}_0 in \mathbb{R}^n , we have

$$\forall \underline{x} \in U \qquad f_1(\underline{x}, y_j - \varepsilon) f_1(\underline{x}, y_j + \varepsilon) < 0$$

and $f_1(\underline{x}, y)$ has a root between $y_j - \varepsilon$ and $y_j + \varepsilon$ is $\xi_{ij}(\underline{x})$. This proves that ξ_{ij} is continuous.