REAL ALGEBRAIC GEOMETRY LECTURE NOTES (17: 15/12/09)

SALMA KUHLMANN

CONTENTS

Decomposition of semialgebraic sets 1.

1

Let R be a real closed field.

1. Decomposition of semialgebraic sets

In the last lecture we proved the following:

Proposition 1.1. (Main proposition "with coefficients") Let $f_1(\underline{\mathbf{x}}, \mathbf{y}), \ldots, f_s(\underline{\mathbf{x}}, \mathbf{y})$ be polynomials in n+1 variables with coefficients in R. Let $q := \max_{i=1,\dots,s} \{ \deg in y \text{ of } f_i(\underline{x}, y) \}$ and $w \in W_{s,q}$.

Then there exists a boolean combination $B_w(\underline{x})$ of polynomial equations and inequalities in the variables \underline{x} with coefficients in R such that for any $\underline{x} \in \mathbb{R}^n$,

 $\operatorname{sign}_{R}(f_{1}(\underline{x}, \mathbf{y}), \dots, f_{s}(\underline{x}, \mathbf{y})) = w \iff B_{w}(\underline{x})$ is satisfied in R.

Theorem 1.2. Let $\underline{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$. Let $f_1(\underline{\mathbf{x}}, \mathbf{y}), \dots, f_s(\underline{\mathbf{x}}, \mathbf{y})$ be polynomials in n+1 variables with coefficients in R. Then there exists a partition of \mathbb{R}^n into a finite number of semialgebraic sets

$$R^n = A_1 \ \dot{\cup} \ \cdots \ \dot{\cup} \ A_m$$

and for each $i = 1, \ldots, m$ there exists a finite number (possibly 0) of continuous semialgebraic functions $\xi_{i1}, \ldots, \xi_{il_i}$ defined on A_i with

$$\xi_{i1} < \dots < \xi_{il_i}$$
$$\xi_{ij} \colon A_i \longrightarrow R$$

and $\xi_{ij}(\underline{x}) < \xi_{ij+1}(\underline{x})$ for all $\underline{x} \in A_i$, for all $j = 1, \ldots, l_i$, such that

- (i) for each $\underline{x} \in A_i$, $\{\xi_{i1}(\underline{x}), \ldots, \xi_{il_i}(\underline{x})\} = \{\text{roots of those polynomials}\}$ among $f_1(\underline{x}, y), \ldots, f_s(\underline{x}, y)$ which are not identically zero};
- (ii) for each $\underline{x} \in A_i$ and $y \in R$, $\operatorname{sign}(f_1(\underline{x}, y)), \ldots, \operatorname{sign}(f_s(\underline{x}, y))$ depend only on $\operatorname{sign}(y - \xi_{i1}), \ldots, \operatorname{sign}(y - \xi_{il_i}).$

Definition 1.3. Let $f_1(\underline{\mathbf{x}}, \mathbf{y}), \ldots, f_s(\underline{\mathbf{x}}, \mathbf{y})$ be polynomials in n + 1 variables with coefficients in R. A partition of R^n into a finite number of semialgebraic sets

$$R^n = A_1 \mathrel{\dot{\cup}} \cdots \mathrel{\dot{\cup}} A_m$$

together with continuous semialgebraic functions

$$\xi_{i1} < \cdots < \xi_{il_i} \colon A_i \longrightarrow R$$

satisfying properties (i) and (ii) of Theorem 1.2 is called a **slicing** of f_1, \ldots, f_s and is denoted by

$$(A_i; (\xi_{ij})_{j=1,\dots,l_i})_{i \in \{1,\dots,m\}}$$

If the A_1, \ldots, A_m are given by boolean combinations on the polynomials $g_1, \ldots, g_t \in R[\mathbf{x}_1, \ldots, \mathbf{x}_n]$, we say that the g_1, \ldots, g_t slice the f_1, \ldots, f_s .

Lemma 1.4. Let $f_1(\underline{\mathbf{x}}, \mathbf{y}), \ldots, f_s(\underline{\mathbf{x}}, \mathbf{y})$ be polynomials in $R[\underline{\mathbf{x}}, \mathbf{y}]$ and $(A_i; (\xi_{ij})_{j=1,\ldots,l_i})_{i \in \{1,\ldots,m\}}$ a slicing of f_1, \ldots, f_s . Then for every i, $1 \leq i \leq m$, and every j, $0 \leq j \leq l_i$, the slice

$$[\xi_{ij}, \xi_{ij+1}] := \{(\underline{x}, y) \in \mathbb{R}^{n+1} : \underline{x} \in A_i \text{ and } \xi_{ij}(\underline{x}) < y < \xi_{ij+1}(\underline{x})\}$$

is semialgebraic and semialgebraically homeomorphic to $A_i \times]0,1[$ (with the convention $\xi_{i0} = -\infty$ and $\xi_{il_{i+1}} = +\infty$).

Proof. Each slice is semialgebraic, since A_i and the functions ξ_{ij} , $j = 1, ..., l_i$ are semialgebraic. We now give explicitly the semialgebraic homeomorphism

$$h:]\xi_{ij}, \xi_{ij+1}[\longrightarrow A_i \times]0, 1[.$$

For $j = 1, \ldots, l_i - 1$ define:

$$h(\underline{x}, y) = (\underline{x}, (y - \xi_{ij}(\underline{x})) / (\xi_{ij+1}(\underline{x}) - \xi_{ij}(\underline{x}))).$$

For j = 0, $\xi_{i0} = -\infty$, define (if $l_i \neq 0$):

$$h(\underline{x}, y) = (\underline{x}, (1 + \xi_{i,1}(\underline{x}) - y)^{-1}).$$

For $j = l_i \neq 0$, $\xi_{il_{i+1}} = +\infty$, define:

$$h(\underline{x}, y) = (\underline{x}, (y - \xi_{i, l_i}(\underline{x}) + 1)^{-1}).$$

If $l_i = 0$, $\xi_0 = -\infty$ and $\xi_1 = +\infty$, define:

$$h(\underline{x}, y) = (\underline{x}, (y + \sqrt{1 + y^2})/2\sqrt{1 + y^2}).$$

Theorem 1.5. Every semialgebraic subset of \mathbb{R}^n is the disjoint union of a finite number of semialgebraic sets, each of them semialgebraically homeomorphic to an open hypercube $]0,1[^d \subset \mathbb{R}^d$, for some $d \in \mathbb{N}$ (where $]0,1[^0$ is a point).

Proof. By induction on n.

For n = 1, we already know that every semialgebraic subset of R is the union of a finite number of points and open intervals. Open intervals are semialgebraically homeomorphic to]0,1[and a point is semialgebraically homeomorphic to $]0,1[^0.$

We now assume that the result holds for n. Let S be a semialgebraic subset of \mathbb{R}^{n+1} , given by a boolean combination of sign conditions on the polynomials f_1, \ldots, f_s , and let $(A_i; (\xi_{ij})_{j=1,\ldots,l_i})_{i \in \{1,\ldots,m\}}$ be a slicing of f_1, \ldots, f_s .

By induction, all A_i are semialgebraically homeomorphic to open hypercubes. Moreover, S is the union of a finite number of semialgebraic sets that are either the graph of a function ξ_{ij} , or a slice $]\xi_{ij}, \xi_{ij+1}[$ as in Lemma 1.4.

The graph of ξ_{ij} is semialgebraically homeomorphic to A_i , while, by Lemma 1.4, the slice $]\xi_{ij}, \xi_{ij+1}[$ is semialgebraically homeomorphic to $A_i \times]0, 1[$.