REAL ALGEBRAIC GEOMETRY LECTURE NOTES (17: 15/12/09)

SALMA KUHLMANN

Contents

1. Decomposition of semialgebraic sets

Let R be a real closed field.

1. Decomposition of semialgebraic sets

In the last lecture we proved the following:
Proposition 1.1. (Main proposition "with coefficients")
Let $f_{1}(\underline{\mathrm{x}}, \mathrm{y}), \ldots, f_{s}(\underline{\mathrm{x}}, \mathrm{y})$ be polynomials in $n+1$ variables with coefficients in R. Let $q:=\max _{i=1, \ldots, s}\left\{\operatorname{deg}\right.$ in y of $\left.f_{i}(\underline{\mathrm{x}}, \mathrm{y})\right\}$ and $w \in W_{s, q}$.

Then there exists a boolean combination $B_{w}(\underline{\mathrm{x}})$ of polynomial equations and inequalities in the variables x with coefficients in R such that for any $\underline{x} \in R^{n}$,

$$
\operatorname{sign}_{R}\left(f_{1}(\underline{x}, y), \ldots, f_{s}(\underline{x}, \mathrm{y})\right)=w \Leftrightarrow B_{w}(\underline{x}) \text { is satisfied in } R .
$$

Theorem 1.2. Let $\underline{\mathrm{x}}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$. Let $f_{1}(\underline{\mathrm{x}}, \mathrm{y}), \ldots, f_{s}(\underline{\mathrm{x}}, \mathrm{y})$ be polynomials in $n+1$ variables with coefficients in R. Then there exixts a partition of R^{n} into a finite number of semialgebraic sets

$$
R^{n}=A_{1} \dot{\cup} \ldots \dot{\cup} A_{m}
$$

and for each $i=1, \ldots, m$ there exists a finite number (possibly 0) of continuous semialgebraic functions $\xi_{i 1}, \ldots, \xi_{i l_{i}}$ defined on A_{i} with

$$
\begin{aligned}
& \xi_{i 1}<\cdots<\xi_{i l_{i}} \\
& \xi_{i j}: A_{i} \longrightarrow R
\end{aligned}
$$

and $\xi_{i j}(\underline{x})<\xi_{i j+1}(\underline{x})$ for all $\underline{x} \in A_{i}$, for all $j=1, \ldots, l_{i}$, such that
(i) for each $\underline{x} \in A_{i},\left\{\xi_{i 1}(\underline{x}), \ldots, \xi_{i l_{i}}(\underline{x})\right\}=\{$ roots of those polynomials among $f_{1}(\underline{x}, \mathrm{y}), \ldots, f_{s}(\underline{x}, \mathrm{y})$ which are not identically zero $\}$;
(ii) for each $\underline{x} \in A_{i}$ and $y \in R, \operatorname{sign}\left(f_{1}(\underline{x}, y)\right), \ldots, \operatorname{sign}\left(f_{s}(\underline{x}, y)\right)$ depend only on $\operatorname{sign}\left(y-\xi_{i 1}\right), \ldots, \operatorname{sign}\left(y-\xi_{i l_{i}}\right)$.

Definition 1.3. Let $f_{1}(\underline{x}, y), \ldots, f_{s}(\underline{x}, y)$ be polynomials in $n+1$ variables with coefficients in R. A partition of R^{n} into a finite number of semialgebraic sets

$$
R^{n}=A_{1} \dot{\cup} \cdots \dot{\cup} A_{m}
$$

together with continuous semialgebraic functions

$$
\xi_{i 1}<\cdots<\xi_{i l_{i}}: A_{i} \longrightarrow R
$$

satisfying properties (i) and $(i i)$ of Theorem 1.2 is called a slicing of f_{1}, \ldots, f_{s} and is denoted by

$$
\left(A_{i} ;\left(\xi_{i j}\right)_{j=1, \ldots, l_{i}}\right)_{i \in\{1, \ldots, m\}}
$$

If the A_{1}, \ldots, A_{m} are given by boolean conbinations on the polynomials $g_{1}, \ldots, g_{t} \in R\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$, we say that the g_{1}, \ldots, g_{t} slice the f_{1}, \ldots, f_{s}.

Lemma 1.4. Let $f_{1}(\underline{\mathrm{x}}, \mathrm{y}), \ldots, f_{s}(\underline{\mathrm{x}}, \mathrm{y})$ be polynomials in $R[\underline{\mathrm{x}}, \mathrm{y}]$ and $\left(A_{i} ;\left(\xi_{i j}\right)_{j=1, \ldots, l_{i}}\right)_{i \in\{1, \ldots, m\}}$ a slicing of f_{1}, \ldots, f_{s}. Then for every i, $1 \leqslant i \leqslant m$, and every $j, 0 \leqslant j \leqslant l_{i}$, the slice

$$
] \xi_{i j}, \xi_{i j+1}\left[:=\left\{(\underline{x}, y) \in R^{n+1}: \underline{x} \in A_{i} \text { and } \xi_{i j}(\underline{x})<y<\xi_{i j+1}(\underline{x})\right\}\right.
$$

is semialgebraic and semialgebraically homeomorphic to $\left.A_{i} \times\right] 0,1[$ (with the convention $\xi_{i 0}=-\infty$ and $\left.\xi_{i l_{i+1}}=+\infty\right)$.

Proof. Each slice is semialgebraic, since A_{i} and the functions $\xi_{i j}, j=1, \ldots, l_{i}$ are semialgebraic. We now give explicity the semialgebraic homeomorphism

$$
h:] \xi_{i j}, \xi_{i j+1}\left[\longrightarrow A_{i} \times\right] 0,1[
$$

For $j=1, \ldots, l_{i}-1$ define:

$$
h(\underline{x}, y)=\left(\underline{x}, \quad\left(y-\xi_{i j}(\underline{x})\right) /\left(\xi_{i j+1}(\underline{x})-\xi_{i j}(\underline{x})\right)\right) .
$$

For $j=0, \xi_{i 0}=-\infty$, define (if $l_{i} \neq 0$):

$$
h(\underline{x}, y)=\left(\underline{x},\left(1+\xi_{i, 1}(\underline{x})-y\right)^{-1}\right)
$$

For $j=l_{i} \neq 0, \xi_{i l_{i+1}}=+\infty$, define:

$$
h(\underline{x}, y)=\left(\underline{x},\left(y-\xi_{i, l_{i}}(\underline{x})+1\right)^{-1}\right) .
$$

If $l_{i}=0, \xi_{0}=-\infty$ and $\xi_{1}=+\infty$, define:

$$
h(\underline{x}, y)=\left(\underline{x},\left(y+\sqrt{1+y^{2}}\right) / 2 \sqrt{1+y^{2}}\right) .
$$

Theorem 1.5. Every semialgebraic subset of R^{n} is the disjoint union of a finite number of semialgebraic sets, each of them semialgebraically homeomorphic to an open hypercube $] 0,1\left[{ }^{d} \subset R^{d}\right.$, for some $d \in \mathbb{N}$ (where $] 0,1\left[{ }^{0}\right.$ is a point).

Proof. By induction on n.
For $n=1$, we already know that every semialgebraic subset of R is the union of a finite number of points and open intervals. Open intervals are semialgebraically homeomorphic to $] 0,1[$ and a point is semialgebraically homeomorphic to $] 0,1\left[{ }^{0}\right.$.

We now assume that the result holds for n. Let S be a semialgebraic subset of R^{n+1}, given by a boolean combination of sign conditions on the polynomials f_{1}, \ldots, f_{s}, and let $\left(A_{i} ;\left(\xi_{i j}\right)_{j=1, \ldots, l_{i}}\right)_{i \in\{1, \ldots, m\}}$ be a slicing of f_{1}, \ldots, f_{s}.

By induction, all A_{i} are semialgebraically homeomorphic to open hypercubes. Moreover, S is the union of a finite number of semialgebraic sets that are either the graph of a function $\xi_{i j}$, or a slice $] \xi_{i j}, \xi_{i j+1}[$ as in Lemma 1.4.

The graph of $\xi_{i j}$ is semialgebraically homeomorphic to A_{i}, while, by Lemma 1.4 , the slice $] \xi_{i j}, \xi_{i j+1}\left[\right.$ is semialgebraically homeomorphic to $\left.A_{i} \times\right] 0,1[$.

