REAL ALGEBRAIC GEOMETRY LECTURE NOTES (18: 17/12/09)

SALMA KUHLMANN

Contents

1.	Semialgebraic connectedness	1
2.	Semialgebraic connected components	3

Let R be a real closed field.

1. Semialgebraic connectedness

In the last lecture we showed:

Theorem 1.1. Every semialgebraic subset of \mathbb{R}^n is the disjoint union of a finite number of semialgebraic sets, each of them semialgebraically homeomorphic to an open hypercube $]0,1[^d \subset \mathbb{R}^d$, for some $d \in \mathbb{N}$ (where $]0,1[^0$ is a point).

Question 1.2. Are the $]0,1[^d$ connected? (equivalently is \mathbb{R}^d connected?)

If $R = \mathbb{R}$ yes, but in general no, because if $R \neq \mathbb{R}$ then R is not Dedekind complete and therefore is disconnected.

So what is a reasonable notion of connectedness for semialgebraic sets?

Definition 1.3. Let $A \subset \mathbb{R}^n$ be a semialgebraic set. We say that A is **semi-algebraic connected** (*semialgebraisch zusammenhängend*) if the following equivalent conditions hold:

- (1) A is not the disjoint union of two non-empty semialgebraic open (relatively to A) subsets of A.
- (2) There are no semialgebraic open sets U_1, U_2 of \mathbb{R}^n such that

$$U_1 \cap A \neq \emptyset \qquad U_2 \cap A \neq \emptyset$$
$$U_1 \cap U_2 \cap A = \emptyset \quad \text{and} \quad (U_1 \cup U_2) \cap A = A.$$

SALMA KUHLMANN

(3) If A_1 , A_2 are disjoint semialgebraic subsets of A with $A = A_1 \cup A_2$ and A_1 , A_2 are open in A, then

either
$$A_1 = \emptyset$$
 or $A_2 = \emptyset$.

(4) Whenever $F_1 \subseteq A$, $F_2 \subseteq A$ are semialgebraic and closed in A with $F_1 \cup F_2 = A$, then

$$F_1 = A$$
 or $F_2 = A$.

Remark 1.4.

(i) A subset $A \subseteq \mathbb{R}^n$ is connected if it is not the disjoint union of two nonempty open (relatively to A) subsets of A. So for any semialgebraic set A,

A connected \Rightarrow A semialgebraic connected.

(ii) Every interval in R is semialgebraic connected, so

A semialgebraic connected \Rightarrow A connected.

(*iii*) The property of being semialgebraic connected (as the property of being connected) is preserved under semialgebraic homeomorphisms.

Theorem 1.5.

- (a) Assume $A, B \subset \mathbb{R}^n$ semialgebraic connected with $A \cap \overline{B} \neq \emptyset$. Then $A \cup B$ is semialgebraic connected.
- (a') If A and B are semialgebraic, with $A \subseteq B \subseteq \overline{A}$,

A semialgebraic connected \Rightarrow B semialgebraic connected.

- (b) $A \subseteq R^m$, $B \subseteq R^n$ semialgebraic connected $\Rightarrow A \times B \subseteq R^{n+m}$ semialgebraic connected.
- (c) If $A \subseteq \mathbb{R}^m$ semialgebraic connected and $f: A \to \mathbb{R}^n$ a continuous semialgebraic map, then $f(A) \subseteq \mathbb{R}^n$ is semialgebraic connected.

Proof.

- (a) Let $A \cup B = U \cup V$ with U, V semialgebraic and open in $A \cup B$. Assume for a contradiction $U, V \neq \emptyset$, say without loss of generality $A \cap U \neq \emptyset$. Since A is semialgebraic connected, we must have $A \subseteq U$. Therefore $A \cap V = \emptyset, V \subseteq B$ and B semialgebraic connected $\Rightarrow V = B$ and U = A. So A, B are open in $A \cup B$ and disjoint. Therefore $A \cap \overline{B} = \emptyset$, contradiction.
- (a') Exercise.

 $\mathbf{2}$

$$A_1 := \{ x \in A : \{x\} \times B \subseteq U \}.$$
$$A_2 := \{ x \in A : \{x\} \times B \subseteq V \}.$$

Since *B* is semialgebraic connected, $A = A_1 \dot{\cup} A_2$. Now $A - A_1 = \pi_1(V)$ is open in *A*. Therefore A_1 is closed in *A*, A_2 is closed in *A*. But A_1 , A_2 semialgebraic and *A* semialgebraic connected $\Rightarrow A_1 = \emptyset$ or $A_2 = \emptyset$, so $U = \emptyset$ or $V = \emptyset$.

(c) Exercise.

2. Semialgebraic connected components

Proposition 2.1. Let $A \subseteq \mathbb{R}^n$ be non-empty semialgebraic. There are finitely many pairwise disjoint A_1, \ldots, A_r semialgebraic connected, semial-gebraic subsets of A which are all open (therefore all closed) in A with

$$A = A_1 \dot{\cup} \cdots \dot{\cup} A_r$$

and this decomposition is unique (up to permutation).

Proof. We know $A = C_1 \cup \cdots \cup C_m$ with $C_i \approx R^d$ semialgebraic, semialgebraic connected $C_i \neq \emptyset$. We proceed by induction on m.

- m = 1. It is clear.
- m > 1. If C_1 is open and closed in A, we can use induction on $C_2 \cup \cdots \cup C_m$. Otherwise $\exists i \in \{2, \ldots, m\}$ such that $\overline{C}_1 \cap C_i \neq \emptyset$ or $C_1 \cap \overline{C}_i \neq \emptyset$. In both cases we get $C_1 \cup C_i$ semialgebraic connected (by 1.5(1.4)(a)) and we are done by induction again.

Uniqueness: Suppose $A = A_1 \cup \cdots \cup A_r = A'_1 \cup \cdots \cup A'_q$ with each A_i and each A'_j open and closed in A and semialgebraic connected. Then each A_i is contained in exactly one A'_j and viceversa every A'_j is contained in exactly one A_i (Exercise).

Definition 2.2. The A_1, \ldots, A_r are called the **semialgebraic connected** components of the semialgebraic set $A \subset \mathbb{R}^n$.

Remark 2.3. A semialgebraic subset of \mathbb{R}^n is semialgebraic connected if and only if it is connected, so every semialgebraic subset of \mathbb{R}^n has a finite number of connected components which are semialgebraic.

(18: 17/12/09)