REAL ALGEBRAIC GEOMETRY LECTURE NOTES (19: 22/12/09)

SALMA KUHLMANN

Contents

1.	Motivation]
2.	Closed and bounded semialgebraic sets]

Let R be a real closed field.

1. MOTIVATION

Theorem 1.1. (Curve-selection Lemma: Kurvenauswahllemma) Let A be a semialgebraic subset of \mathbb{R}^n , $x \in \mathbb{R}^n$, $x \in \overline{A} = \operatorname{clos}(A)$. Then there exists a continuous semialgebraic map $f: [0,1] \to \mathbb{R}^n$ such that f(0) = x and $f([0,1]) \subset A$.

This has important consequences such as

- (1) The image of a closed and bounded semialgebraic set under a continuous semialgebraic map is a closed and bounded semialgebraic set.
- (2) A semialgebraic set is semialgebraic connected if and only if it is semialgebraic **path connected** (*wegzusammenhängend*).

2. Closed and bounded semialgebraic sets

Definition 2.1. A subset $A \subseteq \mathbb{R}^n$ is **bounded** if $\exists r \in \mathbb{R}$ such that ||a|| < r $\forall a \in A$.

We have seen that for $R \neq \mathbb{R}$ we have to replace the notion of "connected" by "semialgebraic connected".

Similarly the notion of compactness is problematic for $R \neq \mathbb{R}$. In fact, closed and bounded subsets of R need not be compact.

Example 2.2. Let $R = \mathbb{R}_{alg} = \{\text{real algebraic numbers}\} = \text{the real closure of } \mathbb{Q} \text{ in } \mathbb{R}.$ The interval $[0,1] \subseteq R$ is not compact. For example the set

$$\mathcal{U} = \{ [0, r[\subset R : r < \pi/4 \} \cup \{]s, 1] \subset R : s > \pi/4 \}$$

is an open cover of [0, 1] by semialgebraic subsets of R and it is not possible to extract from it a finite subcover!

SALMA KUHLMANN

This example shows that, unlike the notion of semialgebraic connectness, a notion of of semialgebraic compactness given just with semialgebraic open coverings is not appropriate. Instead, we shall suffice ourselves with studying "closed and bounded" semialgebraic sets and bounded semialgebraic functions.

Definition 2.3. A function $f: A \to R$ is **bounded** if $\forall a \in A \exists r \in R$ with ||f(a)|| < r.

Proposition 2.4. Let $r \in R$, r > 0 and $\varphi : [0, r] \to R$ a continuous bounded semialgebraic function. Then φ extends to a continuous function on [0, r].

For the proof we need the following lemma:

Lemma 2.5. Let $A \subseteq R$ be a semialgebraic set and $\varphi \colon A \to R$ a semialgebraic function. Then there exists a non-zero polynomial $f \in R[\mathbf{x}, \mathbf{y}]$ such that f vanishes on $\Gamma(\varphi)$, i.e.

$$\forall x \in A \quad f(x,\varphi(x)) = 0.$$

(For its proof see Lemma 1.1 of Lecture 21)

Proof of Proposition 2.4. Assuming Lemma 2.5, let $f \in R[\mathbf{x}, \mathbf{y}]$ be a non-zero polynomial such that f vanishes on $\Gamma(\varphi)$. We shall proceed by induction on $d = \deg f$ in y.

Suppost first d = 1. We write

$$f = Q_1(\mathbf{x})\mathbf{y} + Q_0(\mathbf{x}), \quad Q_0, Q_1 \in R[\mathbf{x}], \quad Q_1 \neq 0.$$

We have that

$$f(x,\varphi(x)) = 0 \Rightarrow Q_1(x)\varphi(x) + Q_0(x) = 0 \qquad \forall x \in [0,r].$$

We may assume that $Q_1(\mathbf{x}), Q_0(\mathbf{x}) \in R[\mathbf{x}]$ are relatively prime (otherwise we divide by the common factor). So we get that

$$\varphi(x) = \frac{-Q_0(x)}{Q_1(x)}$$

(we may assume that $Q_1(x) \neq 0$ for all $x \in [0, r]$, otherwise we take an opportune subinterval $[0, r'] \subset [0, r]$).

Note that $Q_1(x)$ does not have a zero at x = 0 (i.e. x does not divide $Q_1(x)$), otherwise by continuity

$$\lim_{x \to 0^+} \varphi(x) = \pm \infty$$

which contradicts our assumptions that $\exists M \in R$ such that $|\varphi(x)| < M$ for all $x \in [0, r]$. So we can set

$$\varphi(0) := \frac{-Q_0(0)}{Q_1(0)}$$

and with this new definition the map

$$\varphi \colon [0,r] \longrightarrow R$$

is continuous.

 $\mathbf{2}$

3

Let now d > 1 and assume the result to be true for $\deg_y f(x, y) < d$. Without loss of generality we may assume that f(x, y) is not divisible by x. Otherwise, if

$$f(\mathbf{x}, \mathbf{y}) = \mathbf{x} f_1(\mathbf{x}, \mathbf{y}),$$

we have

$$f(x,\varphi(x)) = xf_1(x,\varphi(x)) = 0 \qquad \forall x \in [0,r],$$

therefore

$$f_1(x,\varphi(x)) = 0 \qquad \forall x \in]0,r]$$

and we can replace f by f_1 if necessary. Let

$$f' = \frac{\partial f}{\partial \mathbf{y}} \neq 0$$

and let

$$(A_i; \{\xi_{ij}\}_{j=1,...,l_i})_{i \in I}$$

be a slicing of $\{f, f'\}$. So A_i is a partition of R in intervals and points. We may assume without loss of generality that $A_1 = [0, r]$ and $\varphi = \xi_{1,j_0}$ (for some r' small enough, i.e. replacing r by r' if necessary).

We have to consider two cases:

• If for $x \in A_1 \varphi(x)$ is also a root of f'(x, y) (i.e. f' vanishes on $\Gamma(\varphi)$), then we are done by induction hypothesis, since

$$\deg_{\mathbf{V}} f'(\mathbf{x}, \mathbf{y}) < d.$$

• If not, say $sign(f'(x, \xi_{1j_0}(x))) = sign(f'(x, \varphi(x))) > 0$ for $x \in [0, r]$.

<u>*Claim*</u>: There are two continuous semialgebraic functions ρ and θ such that $\rho, \theta \colon [0, r] \to R$ and

$$\forall x \in]0, r] \qquad \rho(x) < \varphi(x) < \theta(x)$$

and sign(f'(x, y)) is positive for all $y \in]\rho(x), \theta(x)[$ (*).

Proof of Claim. We can take

 $\rho := \xi_{1j_0-1}$ and $\theta = \xi_{1j_0+1}$.

If $\varphi = \xi_{1j_0} = \xi_{11}$ then we can take ρ to be the constant function -(M+1), where M is the bound for φ .

If $j_0 = l_1$ we can take θ to be the constant function M + 1.

Note that these functions are roots of the derivative f', and deg f' < d in y, so by induction hypothesis the continuous semialgebraic maps ρ and θ can be extended to [0, r] since f' vanishes on $\Gamma(\rho)$ and $\Gamma(\theta)$).

SALMA KUHLMANN

Now consider $\rho(0)$ and $\theta(0)$: by continuity we have $\rho(0) \leq \theta(0)$.

- If $\rho(0) = \theta(0)$, set $\varphi(0) = \rho(0)$. This gives a continuous extension of φ to [0, r].
- Otherwise $\rho(0) < \theta(0)$. Consider the function f'(0, y): it is non-negative for every $y \in [\rho(0), \theta(0)]$ (by continuity together with (*) of Claim).

Now if f(0, y) is constant, it would be identically zero because we have

$$f(0,\rho(0)) \leqslant 0 \leqslant f(0,\theta(0))$$

but this is impossible since \mathbf{x} is not a factor of f.

So we must have f'(0,y) > 0 and the function f(0,y) is strictly increasing and has a unique root $y_0 \in [\rho(0), \theta(0)]$. Set

$$\varphi(0) := y_0$$

It remains to show that with this definition φ is continuous at 0 (i.e. that $\lim_{x\to 0^+} \varphi(x) = y_0$).

<u>Case 1</u>. $\rho(0) < y_0 < \theta(0)$.

Then for $\varepsilon \in R$, $\varepsilon > 0$ small enough, $f(0, y_0 - \varepsilon) < 0$, $f(0, y_0 + \varepsilon) > 0$, $\rho(0) < y_0 - \varepsilon < y_0 < y_0 + \varepsilon < \theta(0)$. Hence there exists $\eta \in R$, $\eta > 0$ such that for every $x \in [0, \eta]$:

$$\begin{cases} f(x, y_0 - \varepsilon) < 0\\ f(x, y_0 + \varepsilon) > 0\\ \rho(x) < y_0 - \varepsilon\\ y_0 + \varepsilon < \theta(x) \end{cases}$$

Therefore $\varphi(x) \in]y_0 - \varepsilon, y_0 + \varepsilon[$ for every $x \in]0, \eta[$.

<u>Case 2</u>. $\rho(0) = y_0$.

We have $f(0, y_0 + \varepsilon) > 0$ for every $\varepsilon \in R$, $\varepsilon > 0$ small enough. Then there exists $\eta \in R$, $\eta > 0$ such that for every $x \in]0, \eta[$:

$$\begin{cases} f(x, y_0 + \varepsilon) > 0\\ y_0 - \varepsilon < \rho(x) < y_0 - \varepsilon \end{cases}$$

Again these imply that $\varphi(x) \in [y_0 - \varepsilon, y_0 + \varepsilon]$ for every $x \in [0, \eta]$.

<u>Case 3</u>. $\theta(0) = y_0$. Analogous.