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Let R be a real closed field.

1. Recall and plan

During the last lecture we proved that:

Proposition 1.1. Let ϕ : ]0, r[ → R be a continuous bounded semialgebraic
function defined on an interval ]0, r[ ⊂ R. Then ϕ can be continuously
extended to 0.

This was done assuming the following Lemma that we did not yet prove:

Lemma 1.2. Let A ⊆ R be a semialgebraic set, ϕ : A → R a semialgebraic
function. Then there exists a nonzero polynomial f ∈ R[x, y] such that for
every x ∈ A, f(x, ϕ(x)) = 0.

We shall postpone the proof of the previous Lemma to next lecture, since
we want to focus today on the proof of the Curve Selection Lemma. For this
we shall further assume Thom’s Lemma:

Proposition 1.3. (Thom’s Lemma) Let f1, . . . , fs be a family of polynomials
in R[x] closed under derivation. Let ε : {1, . . . , s} → {−1, 0, 1} be a sign
condition. Set

Aε :=
s⋂

k=1

{x ∈ R : sign(fk(x)) = ε(k)}.

Denote by Aε̄ the semialgebraic subset of R obtained by relaxing the strict
inequalities in Aε, i.e. :

Aε̄ :=
s⋂

k=1

{x ∈ R : sign(fk(x)) = ε(k)}.

where ε̄ is defined as follows:

0̄ = {0} −1 = {−1, 0} 1̄ = {0, 1}
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Then
(i) either Aε is empty, or Aε is a point, or Aε is an open interval;

(ii) if Aε is nonempty then its closure is Aε̄;
(iii) if Aε is empty then Aε̄ is either empty or a point.

Using Prop 1.1 (proved last time) and Thom’s Lemma (to be proved next
time) our goal today is to prove the following:

Theorem 1.4. (Curve Selection Lemma) Let A be a semialgebraic subset
of Rn, x ∈ Rn, x ∈ Ā = clos(A). Then there exists a continuous semialge-
braic map f : [ 0, 1 ]→ Rn such that f(0) = x and f(] 0, 1 ]) ⊂ A.

Lemma 1.5. Let f1, . . . , fs ∈ R[x1, . . . , xn; y] be quasi-monic with respect
to y (i.e. fk = adk

ydk +gdk
(x1, . . . , xn)ydk−1+· · ·+g0(x1, . . . , xn) and adk

∈ R
is constant). Assume that the set {f1, . . . , fs} is closed under derivation with
respect to y.

Let (Ai ; (ξij)j=1,...,li)i=1,...,m be a slicing of {f1, . . . , fs}. Then every
function ξij can be continuously extended to the closure of Ai.

We shall prove the CSL and Lemma 1.5 simultaneously by induction on
n in the following way. We shall show that:

(i) CSL is true for n = 1.
(ii) CSL for n implies Lemma 1.5 for n.

(iii) CSL and Lemma 1.5 for n imply CSL for n+ 1.
(Clearly once (i), (ii), (iii) are established, CSL and Lemma 1.5 will follow

by induction).

2. Proof of the Curve Selection Lemma

(i) n = 1. Let x ∈ Ā. We may assume x /∈ A (otherwise take f to be the
constant map f : [0, 1]→ Rn, f(r) = x ∀ r).

(By o-minimality) we know that A ⊂ R semialgebraic is a finite union of
intervals and points. So the result is clear in this case (if x ∈ Ā, say x is
the endpoint of a (half) open interval I of the form (x, b] ⊂ A or (x, b) ⊂ A
or [a, x) ⊂ A or (a, x), in all cases one can define continuous semialgebraic
f : [0, 1]→ I with f(0) = x).

(ii) Assume CSL holds for n. We show that Lemma 1.5 holds for n.
For fixed i, j and x ∈ Ai, we set

ε(k) := sign(fk(x, ξij(x))),

with k = 1, . . . , s. This is well-defined since sign(fk(x, ξij(x))) does not
depend on x ∈ Ai.

Let x′ ∈ clos(Ai). We show that ξij can be continuously extended to the
semialgebraic set Ai ∪ {x′}.

By CSL for n there is f : [0, 1]→ Rn countinuous and semialgebraic such
that f(0) = x′ and f(]0, 1]) ⊂ (Ai ∩ B̄n(x′, 1)) = A, where B̄n(x′, 1) is the
n-dimensional closed ball with center x′ and radius 1, i.e.

B̄n(x′, 1)) = {a ∈ Rn | ‖a− x′‖ 6 1},

which is a closed and bounded semialgebraic set.
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Define ϕ : ]0, 1]→ R, ϕ := (ξij ◦ f|]0,1]). Then ϕ is continuous and semial-
gebraic. We want to show that ϕ is bounded in order to apply Prop 1.1.

Now let k ∈ {1, . . . , s} be such that for x ∈ Ai:
ξij(x) is a root of fk(x, y),

i.e. say for x ∈ Ai, ξij(x) is a root of

fk(x, y) = adyd + gd−1(x)yd−1 + · · ·+ g0(x)

By Corollary 2.1 of Lecture 6 we have for x ∈ Ai:

|ξij(x)| 6 1 + |gd−1(x)
ad

|+ · · ·+ |g0(x)
ad
|

Consider now x in the bounded set Ai ∩ B̄n(x′, 1)).

Each polynomial g0, . . . , gd−1 is bounded on this set.

So let a ∈ R be such that for every x ∈ Ai ∩ B̄n(x′, 1)) we have

|gl(x)| 6 a ∀ l = 0, . . . , d− 1.

Therefore ϕ is a bounded function. Indeed let t ∈ ]0, 1[ and compute

|ϕ(t)| = |ξij(f(t))| with x = f(t) ∈ Ai ∩ B̄n(x′, 1))

so

|ξij(f(t))| 6 1+|gd−1(f(t))|+· · ·+|g0(f(t))| 6 1+
a

|ad|
+· · ·+ a

|ad|
= 1+

da

|ad|
.

We apply Proposition 1.1 to the bounded continuous semialgebraic func-
tion ϕ to extend ϕ continuously to 0 and we define now

ξij(x′) := ϕ(0).

Claim. ξij is continuous at x′.
We argue by contradiction. If not ∃µ > 0, µ ∈ R such that

∀ η ∈ R ∃x ∈ Ai such that ‖x− x′‖ < η but |ξij(x)− ϕ(0)| > µ.

Consider

Cµ = {x ∈ Ai | |ξij(x)− ϕ(0)| > µ} ∩ B̄n(x′, 1)

Since x′ ∈ clos(Cµ) ⊂ Rn, we can apply CSL to have a continuous semi-
algebraic function

g : [0, 1] −→ Rn

with g(0) = x′ and g(]0, 1]) ⊂ Cµ. We now consider

ψ : ]0, 1]→ R, ψ := (ξij ◦ g|]0,1]).

As before ψ can be continuously extended to 0.
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Subclaim.

(•) |ϕ(0)− ψ(0)| > µ.

(••) For every k = 1, . . . , s

sign fk(x′, ϕ(0)) ∈ ε(k)

sign fk(x′, ψ(0)) ∈ ε(k).

Proof of the Subclaim.

(•) For every t ∈ ]0, 1], ψ(t) = ξij(g(t)) = ξij(x) for some x ∈ Cµ.
Therefore |ϕ(t) − ψ(0)| > µ for every t ∈ ]0, 1] and by continuity of
ψ, |ϕ(0)− ψ(0)| > µ.

(••) Let k ∈ {1, . . . , s}.

If ε(k) = 0, then fk(x, ξij(x)) = 0 for all x ∈ Ai, so by continuity
fk(x′, ϕ(0)) = 0 and

fk(x′, ψ(0)) = 0.

Similarly if ε(k) = −1, then fk(x, ξij(x)) < 0 for all x ∈ Ai, so by
continuity

fk(x′, ϕ(0)) > 0 and

fk(x′, ψ(0)) > 0.

and finally if ε(k) = 1, then fk(x, ξij(x)) > 0 for all x ∈ Ai and
fk(x′, ϕ(0)) > 0 and

fk(x′, ψ(0)) > 0.
�

Consider now the set

{y ∈ R | sign(fk(x′, y)) ∈ ε̄(k), k = 1, . . . , s}.

By Thom’s Lemma this set is either empty or reduces to a point. On
the other hand ϕ(0) 6= ψ(0) and bot ϕ(0), ψ(0) belong to this set by the
subclaim, contradiction. Therefore ξij is continuous at x′.

(iii) We assume CSL and Lemma 1.5 to be true for n and show that CSL
is true for n+ 1.
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Let A ⊆ Rn+1 semialgebraic given by a boolean combination of sign con-
ditions on f1, . . . , fs ∈ R[x1, . . . , xn, y].

Claim. We may assume that f1, . . . , fs are quasi-monic and that the family
is closed under derivation, so that f1, . . . , fs satisfy the conditions of Lemma
1.5.

Let (Ai ; {ξij}j=1,...,li)i=1,...m be a slicing of f1, . . . , fs. So Ai ⊂ Rn for
every i = 1, . . . ,m and the set A is the union of the graphs of some functions
ξij and some slices ]ξij , ξij+1[.

Let (x, y) ∈ clos(A) ⊆ Rn+1. We have to consider the following cases:

(1) (x, y) ∈ clos(Γ(ξij)), ξij : Ai → R.

(2) (x, y) ∈ clos( ]ξij , ξij+1[ ), where 1 < j < li.

(3) (x, y) ∈ clos( ]ξij , ξij+1[ ), where j = 1 or j = li.

Case 1. Let (x, y) ∈ clos(Γ(ξij)), ξij : Ai → R, with Γ(ξij) ⊆ A. Applying
the CSL, let ϕ : [0, 1]→ Rn be a continuous and semialgebraic map such that
ϕ(0) = x and ϕ(]0, 1]) ⊆ Ai.

We can use Lemma 1.5 for n to extend ξij at x continuously. So we must
have ξij(x) = y.

Now set

ψ : [0, 1]
ϕ−→ Ai ∪ {x}

ξij−→ R

and f := (ϕ,ψ). f is continuous semialgebraic, f(0) = (ϕ(0), ψ(0)) =
(x, y) and f(]0, 1]) ⊆ A.

Case 2. (x, y) ∈ clos( ]ξij , ξij+1[ ), where 1 < j < li, with ]ξij , ξij+1[ ⊆
A ⊆ Rn+1, ξij , ξij+1 : Ai → R.

By CSL for n let ϕ : [0, 1]→ Rn be a continuous semialgebraic map with
ϕ(0) = x and ϕ(]0, 1]) ⊆ Ai.

By Lemma 1.5 for n extend the function ξij and ξij+1 continuously to x:

ξij : Ai ∪ {x} −→ R ξij(x) ∈ R
ξij+1 : Ai ∪ {x} −→ R ξij+1(x) ∈ R

Set

t :=


1/2 if ξij(x) = ξij+1(x)

y−ξij(x)
ξij+1(x)−ξij(x) if ξij(x) 6= ξij+1(x)
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and ψ : [(1 − t)ξij + t(ξij+1)] ◦ ϕ. Then ψ is continuous semialgebraic
and ψ(0) = y. Set f := (ϕ,ψ). f is continuous and semialgebraic, with
f(0) = (ϕ(0), ψ(0)) = (x, y) and f(]0, 1]) ⊆ A.

Case 3. Exercise.


