REAL ALGEBRAIC GEOMETRY LECTURE NOTES
 (21: $12 / 01 / 10$)

SALMA KUHLMANN

Contents

1. Thom's Lemma 1
2. Semialgebraic path connectedness 2
3. Semialgebraic compactness 4

Let R be a real closed field.

1. Thom's Lemma

Lemma 1.1. Let $A \subset R$ be a semialgebraic set and $\varphi: A \rightarrow R$ a semialgebraic function. Then exists $f \in R[\mathrm{x}, \mathrm{y}], f \neq 0$, such that

$$
\forall x \in A \quad f(x, \varphi(x))=0 \quad(f \text { vanishes on the graph of } \varphi) .
$$

Proof. The graph of $\varphi \Gamma(\varphi)=\{(x, \varphi(x)): x \in A\} \subset R^{2}$ is a semialgebraic set, so it is a finite union of sets of the form

$$
\left\{(x, y) \in R^{2}: f_{i}(x, y)=0, i=1, \ldots, l g_{j}(x, y)>0, j=1, \ldots, m\right\}
$$

with at least one among the $f_{i} \neq 0$, otherwise $\Gamma(\varphi)$ would contain an open subset of R^{2}, contradiction.

Now take f to be the product of these nonzero polynomials.
Proposition 1.2. (Thom's Lemma) Let $\left\{f_{1}, \ldots, f_{s}\right\}$ be a family of non-zero polynomials in $R[X]$ closed under derivation. Let $\varepsilon:\{1, \ldots, s\} \rightarrow\{-1,0,1\}$ be a sign function. Set

$$
A_{\varepsilon}:=\left\{x \in R: \operatorname{sign}\left(f_{k}(x)\right)=\varepsilon(k), k=1, \ldots, s\right\} .
$$

Denote by $A_{\bar{\varepsilon}}$ the semialgebraic subset of R obtained by relaxing the strict inequalities in A_{ε}, i.e. :

$$
A_{\bar{\varepsilon}}:=\bigcap_{k=1}^{s}\left\{x \in R: \operatorname{sign}\left(f_{k}(x)\right) \in \bar{\varepsilon}(k)\right\} .
$$

where $\bar{\varepsilon}$ is defined as follows:

$$
\overline{0}=\{0\} \quad-\overline{1}=\{-1,0\} \quad \overline{1}=\{0,1\} .
$$

Then
(i) either A_{ε} is empty, or A_{ε} is a point, or A_{ε} is a non-empty open interval (if A_{ε} is empty or a point, then $\varepsilon(k)=0$ for some k; if A_{ε} is a non-empty open interval then $\varepsilon(k)= \pm 1$ for every $k)$;
(ii) if A_{ε} is non-empty then its closure is $A_{\bar{\varepsilon}}$ (which is either a point or a closed interval different from a point and the interior of this interval is A_{ε});
(iii) if A_{ε} is empty then $A_{\bar{\varepsilon}}$ is either empty or a point.

Proof. By induction on s. The Lemma holds trivially for $s=0$. Let $f_{1}, \ldots, f_{s}, f_{s+1} \in R[\mathrm{x}] \backslash\{0\}$ be polynomials such that if $f_{k}^{\prime} \neq 0$, then $f_{k}^{\prime} \in\left\{f_{1}, \ldots, f_{s+1}\right\}$. Without loss of generality we assume that $\operatorname{deg}\left(f_{s+1}\right)=$ $\max \left\{\operatorname{deg}\left(f_{k}\right): 1 \leqslant k \leqslant s+1\right\}$.

Let $\varepsilon^{\prime}:\{1, \ldots, s, s+1\} \rightarrow\{-1,0,1\}$ and $\varepsilon:\{1, \ldots, s,\} \rightarrow\{-1,0,1\}$ the restriction.

Note that

$$
A_{\varepsilon^{\prime}}=A_{\varepsilon} \cap\left\{x \in R: \operatorname{sign}\left(f_{s+1}(x)\right)=\varepsilon^{\prime}(s+1)\right\} .
$$

By induction A_{ε} is empty, a point, or an interval.
If A_{ε} is empty or a point, then obviously so is $A_{\varepsilon^{\prime}}$ and the other property follows immediately by induction hypothesis on A_{ε}.

Assume A_{ε} is an interval. Now $f_{s+1}^{\prime}=0$ or $f_{s+1}^{\prime} \in\left\{f_{1}, \ldots, f_{s}\right\}$. So by definition of $A_{\varepsilon}, f_{s+1}^{\prime}$ has constant sign on A_{ε}. Therefore f_{s+1} is either strictly increasing, or strictly decreasing or constant on A_{ε}.

Consider $A_{\varepsilon}=(a, b)$ There are three cases depending on $\varepsilon^{\prime}(s+1)$:
Case 1. $A_{\varepsilon^{\prime}}=\left\{x \in(a, b): f_{s+1}(x)>0\right\}$.
Case 2. $A_{\varepsilon^{\prime}}=\left\{x \in(a, b): f_{s+1}(x)<0\right\}$.
Case 3. $A_{\varepsilon^{\prime}}=\left\{x \in(a, b): f_{s+1}(x)=0\right\}$.

If $A_{\varepsilon^{\prime}}=\emptyset$ there is nothing to prove.
Assume $A_{\varepsilon^{\prime}} \neq \emptyset$. If f_{s+1} is constant on A_{ε} then f_{s+1} is a constant polynomial $f_{s+1}(x)=c \neq 0$. So $A_{\varepsilon^{\prime}}$ is empty or $A_{\varepsilon^{\prime}}=(a, b)$ depending on whether $\operatorname{sign}(c)=\varepsilon^{\prime}(s+1)$.

Assume now f_{s+1} strictly increasing on A_{ε} and $A_{\varepsilon^{\prime}}=\{x \in(a, b)$: $\left.f_{s+1}(x)>0\right\} \neq \emptyset$. Let $x_{0}=\inf \left\{x \in(a, b): f_{s+1}(x)>0\right\}$. Since f_{s+1} is strictly increasing it follows that $f_{s+1}(x)>0 \forall x \in(a, b)$ with $x>x_{0}$. So $A_{\varepsilon^{\prime}}=\left(x_{0}, b\right)$ and its closure is $\left[x_{0}, b\right]=A_{\varepsilon^{\prime}}$. The other cases are treated similarly.

2. SEmialgebraic Path CONNECTEDNESS

Definition 2.1. Let $A \subseteq R^{n}$ be a semialgebraic set.
(1) A semialgebraic path in A is a continuous semialgebraic map

$$
\alpha: I \longrightarrow A,
$$

where I is either $[0,1]$ or $] 0,1[$.
(2) Let $x, y \in A$. We say that x is semialgebraic path connected to y if there exists a semialgebraic path in A

$$
\alpha:[0,1] \longrightarrow A
$$

with $\alpha(0)=x$ and $\alpha(1)=y$.
Remark 2.2. Note that " x is semialgebraic path connected to y " is an equivalence relation on A :

To see simmetry observe that if α is a path from x to y then

$$
\alpha^{*}(t):=\alpha(1-t)
$$

defines a path from y to x.
To see transitivity observe that if α is a path from x to y and β is a path from y to z, then

$$
\gamma(t):= \begin{cases}\alpha(2 t) & 0 \leqslant t \leqslant 1 / 2 \\ \beta(2 t-1) & 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

is a path from x to z.
(3) A is semialgebraic path connected if any two points in A are semialgebraic path connected.

Proposition 2.3. Let A be a semialgebraic set. Then
A is semialgebraic connected $\Longleftrightarrow A$ is semialgebraic path connected.
Proof.
(\Rightarrow) Suppose A is a semialgebraic connected set and let

$$
A=\bigcup_{i=1}^{n} C_{i}
$$

a semialgebraic cell decomposition of A (so each C_{i} is semialgebraic path connected). Then we have seen that there is an equivalence relation on $\left\{C_{i}: i=1, \ldots, n\right\}$ given by:

$$
\begin{aligned}
C_{i} \sim C_{j} \Leftrightarrow & \exists C_{i_{0}}, \ldots, C_{i_{q}} \text { such that } C_{i_{0}}=C_{i}, C_{i_{q}}=C_{j} \text { and } \\
& C_{i_{k}} \cap \bar{C}_{i_{k+1}} \neq \emptyset \text { or } \bar{C}_{i_{k}} \cap C_{i_{k+1}} \neq \emptyset \quad \forall 0 \leqslant k<q
\end{aligned}
$$

such that the equivalence classes with respect to this equivalence relation are the semialgebraic connected component of S. Since A is semialgebraic connected there is only one equivalence class.

Claim 1. If C is a semialgebraic path connected set, also the closure \bar{C} of C is semialgebraic path connected (it is an immediate
consequence of the Curve Selection Lemma).
Claim 2. If $A_{1}, A_{2} \subseteq R^{n}$ are semialgebraic path connected with $A_{1} \cap A_{2} \neq \emptyset$, then $A_{1} \cup A_{2}$ is semialgebraic path connected.

So let $x, y \in A$. We want to find a semialgebraic path in A joining x and y. Let $x \in C_{i}$ and $y \in C_{j}$ and $C_{i_{0}}, \ldots, C_{i_{q}}$ as above. For every $0 \leqslant k<q$, let $a_{k} \in C_{i_{k}} \cap \bar{C}_{i_{k+1}}$ or $a_{k} \in \bar{C}_{i_{k}} \cap C_{i_{k+1}}$. By Claim 1 and Claim 2 we can find semialgebraic paths joining a_{k} with a_{k+1} for every $0 \leqslant k<q$ and conclude joining x with a_{0} (since $C_{i}=C_{i_{0}}$ is semialgebraic path connected) and a_{q-1} with y (since $C_{j}=C_{i_{q}}$ is semialgebraic path connected).
(\Leftarrow) Claim. If A is path connected then A is connected.
Suppose for a contradiction that A is a disjoint union of non-empty open sets A_{1} and A_{2}. Take $x \in A_{1}, y \in A_{2}$ and $\varphi:[0,1] \rightarrow A$ a continuous function such that $\varphi(x)=0$ and $\varphi(y)=y$ (it exists because A is path connected).

Now consider $X_{1}:=[0,1] \cap \varphi^{-1}\left(A_{1}\right)$ and $X_{2}:=[0,1] \cap \varphi^{-1}\left(A_{2}\right)$. Then X_{1} and X_{2} disconnect $[0,1]$, contradiction.

So we have:
A semialg. path conn. $\Rightarrow A$ path conn. $\Rightarrow A$ conn. $\Rightarrow A$ semialg. conn.

The semialgebraic assumption is essential to prove (\Rightarrow), as the following example shows:

Example 2.4. Let $\Gamma=\left\{(x, \sin (1 / x): x>0\} \subset \mathbb{R}^{2}\right.$ and consider $A=$ $\{(0,0)\} \cup \Gamma$. Note that $(0,0)$ is in the closure $\bar{\Gamma}$ of Γ. Then A is connected but it is not path connected: there is no continuous function inside A joining $\{(0,0)\}$ with a point of Γ.

3. Semialgebraic compactness

Definition 3.1. A semialgebraic set $A \subset R^{n}$ is semialgebraic compact if for every semialgebraic path $\alpha:] 0,1[\longrightarrow A$,

$$
\exists \lim _{t \rightarrow 0^{+}} \alpha(t) \in A .
$$

Theorem 3.2. Let $A \subseteq R^{n}$ be a semialgebraic set. Then
A is semialgebraic compact $\Longleftrightarrow A$ is closed and bounded.
Proof.
(\Leftarrow) Let $A \subseteq R^{n}$ be closed and bounded and $\left.\alpha:\right] 0,1[\rightarrow A$ a semialgebraic path.

Since A is bounded, α can be continuously extended to 0 , so

$$
\exists \lim _{t \rightarrow 0^{+}} \alpha(t)=x \in R^{n}
$$

and $x=\alpha(0)$.
But A is closed, then $\alpha(0) \in A$.
(\Rightarrow) Assume A is semialgebraic compact and suppose for a contradiction that A is not closed.

Let $x \in \bar{A}, x \notin A$. By the Curve Selection Lemma there is a semialgebraic continuous function $f:[0,1] \rightarrow R^{n}$ such that $\left.\left.f(] 0,1\right]\right) \subset A$ and $f(0)=x$. Therefore

$$
x=\lim _{t \rightarrow 0^{+}} f(t),
$$

and $x \in A$, since A is semialgebraic compact. Contradiction.
To show that A is bounded we use the following corollary to the Curve Selection Lemma:

Corollary 3.3. Let $A \subseteq R^{n}$ be an unbounded semialgebraic set. Then there is a semialgebraic path $\alpha:] 0,1[\rightarrow A$ with

$$
\lim _{t \rightarrow 0}|\alpha(t)|=\infty
$$

The following Theorem and its Corollory is a particular indication that the notion of "semialgebraic compactness" is the correct analogue to usual compactness, adapted to the semialgebraic setting:

Theorem 3.4. Let A, B semialgebraic sets and $f: A \rightarrow B$ a semialgebraic continuous map. Then

$$
\text { A semialgebraic compact } \Rightarrow f(A) \text { semialgebraic compact. }
$$

Proof. We assume the following Lemma:
Lemma 3.5. Let $f: A \rightarrow B$ be a semialgebraic map with A, B semialgebraic sets. Let $\beta:] 0,1[\rightarrow B$ be a semialgebraic path in B with $\beta(] 0,1[) \subseteq f(A)$. Then there is $0<c \leqslant 1$ and a semialgebraic continuous function $\alpha:] 0, c[\rightarrow A$ such that $\beta(t)=f(\alpha(t))$ for every $0<t<c$.

Let $\beta:] 0,1[\rightarrow f(A)$ be a semialgebraic path. We want to show that

$$
\exists \lim _{t \rightarrow 0^{+}} \beta(t) \in f(A)
$$

By Lemma 3.5, there is $0<c \leqslant 1$ and a semialgebraic continuous function $\alpha:] 0, c[\rightarrow A$ such that $\beta(t)=f(\alpha(t))$ for every $0<t<c$. Since A is semialgebraic compact

$$
\exists \lim _{t \rightarrow 0^{+}} \alpha(t)=x \in A .
$$

So $\lim _{t \rightarrow 0^{+}} \beta(t)=f(x) \in f(A)$, as required.

Corollary 3.6. If A is a semialgebraic compact set then any semialgebraic continuous function $f: A \rightarrow R$ takes maximum and minimum.
Proof. By Thereom above $f(A)$ is semialgebraic compact, so by 3.2 it is closed and bounded. So $f(A)$ is a union of finitely many intervals $\left[a_{i}, b_{i}\right]$ (with $a_{i} \leqslant b_{i} \in R$).

