REAL ALGEBRAIC GEOMETRY LECTURE NOTES (21: 12/01/10)

SALMA KUHLMANN

Contents

1.	Thom's Lemma	1
2.	Semialgebraic path connectedness	2
3.	Semialgebraic compactness	4

Let R be a real closed field.

1. THOM'S LEMMA

Lemma 1.1. Let $A \subset R$ be a semialgebraic set and $\varphi \colon A \to R$ a semialgebraic function. Then exists $f \in R[x, y], f \neq 0$, such that

 $\forall x \in A \qquad f(x,\varphi(x)) = 0 \qquad (f \text{ vanishes on the graph of } \varphi).$

Proof. The graph of $\varphi \Gamma(\varphi) = \{(x, \varphi(x)) : x \in A\} \subset \mathbb{R}^2$ is a semialgebraic set, so it is a finite union of sets of the form

$$\{(x,y) \in R^2 : f_i(x,y) = 0, \ i = 1, \dots, l \ g_j(x,y) > 0, \ j = 1, \dots, m\}$$

with at least one among the $f_i \neq 0$, otherwise $\Gamma(\varphi)$ would contain an open subset of \mathbb{R}^2 , contradiction.

Now take f to be the product of these nonzero polynomials.

Proposition 1.2. (Thom's Lemma) Let $\{f_1, \ldots, f_s\}$ be a family of non-zero polynomials in R[X] closed under derivation. Let $\varepsilon \colon \{1, \ldots, s\} \to \{-1, 0, 1\}$ be a sign function. Set

$$A_{\varepsilon} := \{ x \in R : \operatorname{sign}(f_k(x)) = \varepsilon(k), \ k = 1, \dots, s \}.$$

Denote by $A_{\overline{\varepsilon}}$ the semialgebraic subset of R obtained by relaxing the strict inequalities in A_{ε} , i.e. :

$$A_{\bar{\varepsilon}} := \bigcap_{k=1}^{s} \{ x \in R : \operatorname{sign}(f_k(x)) \in \bar{\varepsilon}(k) \}.$$

where $\bar{\varepsilon}$ is defined as follows:

 $\bar{0} = \{0\}$ $-\bar{1} = \{-1, 0\}$ $\bar{1} = \{0, 1\}.$

Then

SALMA KUHLMANN

- (i) either A_{ε} is empty, or A_{ε} is a point, or A_{ε} is a non-empty open interval (if A_{ε} is empty or a point, then $\varepsilon(k) = 0$ for some k; if A_{ε} is a non-empty open interval then $\varepsilon(k) = \pm 1$ for every k);
- (ii) if A_{ε} is non-empty then its closure is $A_{\overline{\varepsilon}}$ (which is either a point or a closed interval different from a point and the interior of this interval is A_{ε});
- (iii) if A_{ε} is empty then $A_{\overline{\varepsilon}}$ is either empty or a point.

Proof. By induction on s. The Lemma holds trivially for s = 0. Let $f_1, \ldots, f_s, f_{s+1} \in R[x] \setminus \{0\}$ be polynomials such that if $f'_k \neq 0$, then $f'_k \in \{f_1, \ldots, f_{s+1}\}$. Without loss of generality we assume that $\deg(f_{s+1}) = \max\{\deg(f_k) : 1 \leq k \leq s+1\}$.

Let $\varepsilon': \{1, \ldots, s, s+1\} \to \{-1, 0, 1\}$ and $\varepsilon: \{1, \ldots, s, \} \to \{-1, 0, 1\}$ the restriction.

Note that

$$A_{\varepsilon'} = A_{\varepsilon} \cap \{ x \in R : \operatorname{sign}(f_{s+1}(x)) = \varepsilon'(s+1) \}.$$

By induction A_{ε} is empty, a point, or an interval.

If A_{ε} is empty or a point, then obviously so is $A_{\varepsilon'}$ and the other property follows immediately by induction hypothesis on A_{ε} .

Assume A_{ε} is an interval. Now $f'_{s+1} = 0$ or $f'_{s+1} \in \{f_1, \ldots, f_s\}$. So by definition of A_{ε} , f'_{s+1} has constant sign on A_{ε} . Therefore f_{s+1} is either strictly increasing, or strictly decreasing or constant on A_{ε} .

Consider $A_{\varepsilon} = (a, b)$ There are three cases depending on $\varepsilon'(s+1)$:

Case 1.
$$A_{\varepsilon'} = \{x \in (a, b) : f_{s+1}(x) > 0\}.$$

Case 2. $A_{\varepsilon'} = \{x \in (a, b) : f_{s+1}(x) < 0\}.$
Case 3. $A_{\varepsilon'} = \{x \in (a, b) : f_{s+1}(x) = 0\}.$

If $A_{\varepsilon'} = \emptyset$ there is nothing to prove.

Assume $A_{\varepsilon'} \neq \emptyset$. If f_{s+1} is constant on A_{ε} then f_{s+1} is a constant polynomial $f_{s+1}(x) = c \neq 0$. So $A_{\varepsilon'}$ is empty or $A_{\varepsilon'} = (a, b)$ depending on whether $\operatorname{sign}(c) = \varepsilon'(s+1)$.

Assume now f_{s+1} strictly increasing on A_{ε} and $A_{\varepsilon'} = \{x \in (a,b) : f_{s+1}(x) > 0\} \neq \emptyset$. Let $x_0 = \inf\{x \in (a,b) : f_{s+1}(x) > 0\}$. Since f_{s+1} is strictly increasing it follows that $f_{s+1}(x) > 0 \ \forall x \in (a,b)$ with $x > x_0$. So $A_{\varepsilon'} = (x_0, b)$ and its closure is $[x_0, b] = A_{\overline{\varepsilon'}}$. The other cases are treated similarly.

2. Semialgebraic path connectedness

Definition 2.1. Let $A \subseteq \mathbb{R}^n$ be a semialgebraic set.

 $\mathbf{2}$

3

(1) A semialgebraic path in A is a continuous semialgebraic map

$$\alpha \colon I \longrightarrow A,$$

where I is either [0, 1] or]0, 1[.

(2) Let $x, y \in A$. We say that x is semialgebraic path connected to y if there exists a semialgebraic path in A

$$\alpha \colon [0,1] \longrightarrow A$$

with $\alpha(0) = x$ and $\alpha(1) = y$.

Remark 2.2. Note that "x is semialgebraic path connected to y" is an equivalence relation on A:

To see simmetry observe that if α is a path from x to y then

$$\alpha^*(t) := \alpha(1-t)$$

defines a path from y to x.

To see transitivity observe that if α is a path from x to y and β is a path from y to z, then

$$\gamma(t) := \begin{cases} \alpha(2t) & 0 \leqslant t \leqslant 1/2 \\ \beta(2t-1) & 1/2 \leqslant t \leqslant 1 \end{cases}$$

is a path from x to z.

(3) A is semialgebraic path connected if any two points in A are semialgebraic path connected.

Proposition 2.3. Let A be a semialgebraic set. Then

A is semialgebraic connected \iff A is semialgebraic path connected. Proof.

 (\Rightarrow) Suppose A is a semialgebraic connected set and let

$$A = \bigcup_{i=1}^{n} C_i$$

a semialgebraic cell decomposition of A (so each C_i is semialgebraic path connected). Then we have seen that there is an equivalence relation on $\{C_i : i = 1, ..., n\}$ given by:

$$C_i \sim C_j \Leftrightarrow \exists C_{i_0}, \dots, C_{i_q} \text{ such that } C_{i_0} = C_i, \ C_{i_q} = C_j \text{ and}$$
$$C_{i_k} \cap \bar{C}_{i_{k+1}} \neq \emptyset \text{ or } \bar{C}_{i_k} \cap C_{i_{k+1}} \neq \emptyset \ \forall \ 0 \leqslant k < q,$$

such that the equivalence classes with respect to this equivalence relation are the semialgebraic connected component of S. Since A is semialgebraic connected there is only one equivalence class.

Claim 1. If C is a semialgebraic path connected set, also the closure \overline{C} of C is semialgebraic path connected (it is an immediate

SALMA KUHLMANN

consequence of the Curve Selection Lemma).

Claim 2. If $A_1, A_2 \subseteq \mathbb{R}^n$ are semialgebraic path connected with $A_1 \cap A_2 \neq \emptyset$, then $A_1 \cup A_2$ is semialgebraic path connected.

So let $x, y \in A$. We want to find a semialgebraic path in A joining x and y. Let $x \in C_i$ and $y \in C_j$ and C_{i_0}, \ldots, C_{i_q} as above. For every $0 \leq k < q$, let $a_k \in C_{i_k} \cap \overline{C}_{i_{k+1}}$ or $a_k \in \overline{C}_{i_k} \cap C_{i_{k+1}}$. By Claim 1 and Claim 2 we can find semialgebraic paths joining a_k with a_{k+1} for every $0 \leq k < q$ and conclude joining x with a_0 (since $C_i = C_{i_0}$ is semialgebraic path connected) and a_{q-1} with y (since $C_j = C_{i_q}$ is semialgebraic path connected).

(\Leftarrow) Claim. If A is path connected then A is connected.

Suppose for a contradiction that A is a disjoint union of non-empty open sets A_1 and A_2 . Take $x \in A_1$, $y \in A_2$ and $\varphi : [0,1] \to A$ a continuous function such that $\varphi(x) = 0$ and $\varphi(y) = y$ (it exists because A is path connected).

Now consider $X_1 := [0,1] \cap \varphi^{-1}(A_1)$ and $X_2 := [0,1] \cap \varphi^{-1}(A_2)$. Then X_1 and X_2 disconnect [0,1], contradiction.

So we have:

A semialg. path conn. \Rightarrow A path conn. \Rightarrow A conn. \Rightarrow A semialg. conn.

The semialgebraic assumption is essential to prove (\Rightarrow) , as the following example shows:

Example 2.4. Let $\Gamma = \{(x, \sin(1/x) : x > 0\} \subset \mathbb{R}^2 \text{ and consider } A = \{(0,0)\} \cup \Gamma$. Note that (0,0) is in the closure $\overline{\Gamma}$ of Γ . Then A is connected but it is not path connected: there is no continuous function inside A joining $\{(0,0)\}$ with a point of Γ .

3. Semialgebraic compactness

Definition 3.1. A semialgebraic set $A \subset \mathbb{R}^n$ is semialgebraic compact if for every semialgebraic path $\alpha: [0, 1] \longrightarrow A$,

$$\exists \lim_{t \to 0^+} \alpha(t) \in A.$$

Theorem 3.2. Let $A \subseteq \mathbb{R}^n$ be a semialgebraic set. Then

A is semialgebraic compact \iff A is closed and bounded.

Proof.

(⇐) Let $A \subseteq \mathbb{R}^n$ be closed and bounded and α : $]0,1[\rightarrow A$ a semialgebraic path.

5

Since A is bounded, α can be continuously extended to 0, so

$$\exists \lim_{t \to 0^+} \alpha(t) = x \in R^n$$

and $x = \alpha(0)$. But A is closed, then $\alpha(0) \in A$.

 (\Rightarrow) Assume A is semialgebraic compact and suppose for a contradiction that A is not closed.

Let $x \in \overline{A}$, $x \notin A$. By the Curve Selection Lemma there is a semialgebraic continuous function $f: [0,1] \to \mathbb{R}^n$ such that $f(]0,1]) \subset A$ and f(0) = x. Therefore

$$x = \lim_{t \to 0^+} f(t),$$

and $x \in A$, since A is semialgebraic compact. Contradiction.

To show that A is bounded we use the following corollary to the Curve Selection Lemma:

Corollary 3.3. Let $A \subseteq \mathbb{R}^n$ be an unbounded semialgebraic set. Then there is a semialgebraic path $\alpha : [0, 1] \to A$ with

$$\lim_{t \to 0} |\alpha(t)| = \infty.$$

The following Theorem and its Corollory is a particular indication that the notion of "semialgebraic compactness" is the correct analogue to usual compactness, adapted to the semialgebraic setting:

Theorem 3.4. Let A, B semialgebraic sets and $f: A \to B$ a semialgebraic continuous map. Then

A semialgebraic compact \Rightarrow f(A) semialgebraic compact.

Proof. We assume the following Lemma:

Lemma 3.5. Let $f: A \to B$ be a semialgebraic map with A, B semialgebraic sets. Let $\beta: [0, 1[\to B \text{ be a semialgebraic path in } B \text{ with } \beta(]0, 1[) \subseteq f(A)$. Then there is $0 < c \leq 1$ and a semialgebraic continuous function $\alpha: [0, c[\to A \text{ such that } \beta(t) = f(\alpha(t)) \text{ for every } 0 < t < c.$

Let $\beta: [0,1] \to f(A)$ be a semialgebraic path. We want to show that

$$\exists \lim_{t \to 0^+} \beta(t) \in f(A).$$

By Lemma 3.5, there is $0 < c \leq 1$ and a semialgebraic continuous function α : $[0, c[\rightarrow A \text{ such that } \beta(t) = f(\alpha(t)) \text{ for every } 0 < t < c.$ Since A is semialgebraic compact

$$\exists \lim_{t \to 0^+} \alpha(t) = x \in A.$$

So $\lim_{t\to 0^+} \beta(t) = f(x) \in f(A)$, as required.

Corollary 3.6. If A is a semialgebraic compact set then any semialgebraic continuous function $f: A \to R$ takes maximum and minimum.

Proof. By Thereom above f(A) is semialgebraic compact, so by 3.2 it is closed and bounded. So f(A) is a union of finitely many intervals $[a_i, b_i]$ (with $a_i \leq b_i \in R$).