REAL ALGEBRAIC GEOMETRY LECTURE NOTES (24: 21/01/10)

SALMA KUHLMANN

Contents

1.	Hahn Sandwich Proposition	1
2.	Immediate extensions	1
3.	Valuation independence	2
4.	Maximal valuation independence	3
5.	Valuation basis	4

1. HAHN SANDWICH PROPOSITION

From now, let Z = Q be a field and (V, v) a valued Q-vector space with skeleton $S(V) = [\Gamma, B(\gamma)]$. We want to show

$$(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}) \hookrightarrow (V, v) \hookrightarrow (\mathrm{H}_{\gamma \in \Gamma} B(\gamma), v_{\min}).$$

2. Immediate extensions

Definition 2.1. Let (V_i, v_i) be valued Q-vector spaces (i = 1, 2).

(1) Let $V_1 \subseteq V_2$ Q-subspace with $v_1(V_1) \subseteq v_2(V_2)$. We say that (V_2, v_2) is an **extension** of (V_1, v_1) , and we write

$$(V_1, v_1) \subseteq (V_2, v_2),$$

if $v_{2|_{V_1}} = v_1$.

(2) If $(V_1, v_1) \subseteq (V_2, v_2)$, for $\gamma \in v_1(V_1)$ the map

$$B_1(\gamma) \longrightarrow B_2(\gamma)$$
$$x + (V_1)_{\gamma} \mapsto x + (V_2)_{\gamma}$$

is a natural identification of $B_1(\gamma)$ as a Q-subspace of $B_2(\gamma)$. The extension $(V_1, v_1) \subseteq (V_2, v_2)$ is **immediate** if $\Gamma := v_1(V_1) = v_2(V_2)$ and $\forall \gamma \in v_1(V_1)$

$$B_1(\gamma) = B_2(\gamma).$$

Equivalently, $(V_1, v_1) \subseteq (V_2, v_2)$ is immediate if $S(V_1, v_1) = S(V_2, v_2)$.

Lemma 2.2. (Characterization of immediate extensions) The extension $(V_1, v_1) \subseteq (V_2, v_2)$ is immediate if and only if

extension
$$(v_1, v_1) \subseteq (v_2, v_2)$$
 is immediate if and only if

$$x \in V_2, x \neq 0, \exists y \in V_1 \text{ such that } v_2(x-y) > v_2(x).$$

Proof. We show that in a valued Q-vector space (V, v), for every $x, y \in V$

$$v(x-y) > v(x) \iff \begin{cases} (i) & \gamma = v(x) = v(y) \text{ and} \\ (ii) & \pi(\gamma, x) = \pi(\gamma, y). \end{cases}$$

(\Leftarrow) Assume (i) and (ii). So $x, y \in V^{\gamma}$ and $x - y \in V_{\gamma}$. Then $v(x - y) > v(x) = \gamma$.

(\Rightarrow) Assume v(x - y) > v(x). We show (i) and (ii). If $v(x) \neq v(y)$, then $v(x - y) = \min\{v(x), v(y)\}$. In both cases $\min\{v(x), v(y)\} = v(x)$ and $\min\{v(x), v(y)\} = v(y)$ we have a contradiction. (ii) is analogue.

Example 2.3. $(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}) \subseteq (\operatorname{H}_{\gamma \in \Gamma} B(\gamma), v_{\min})$ is an immediate extension.

Proof. Given $x \in \mathcal{H}_{\gamma \in \Gamma} B(\gamma), x \neq 0$, set

$$\gamma_0 := \min \operatorname{support}(x) \quad \text{and} \quad x(\gamma_0) := b_0 \in B(\gamma_0).$$

Let $y \in \bigsqcup_{\gamma \in \Gamma} B(\gamma)$ such that

$$y(\gamma) = \begin{cases} 0 & \text{if } \gamma \neq \gamma_0 \\ b_0 & \text{if } \gamma = \gamma_0. \end{cases}$$

Namely $y = b_0 \chi_{\gamma_0}$, where

$$\chi_{\gamma_0}(\gamma) = \begin{cases} 1 & \text{if } \gamma = \gamma_0 \\ 0 & \text{if } \gamma \neq \gamma_0. \end{cases}$$

 $\chi_{\gamma_0} \colon \Gamma \longrightarrow Q$

Then $v_{\min}(x-y) > \gamma_0 = v_{\min}(x)$ (because $(x-y)(\gamma_0) = x(\gamma_0) - y(\gamma_0) = b_0 - b_0 = 0$).

3. VALUATION INDEPENDENCE

Definition 3.1. $\mathcal{B} = \{x_i : i \in I\} \subseteq V \setminus \{0\}$ is *Q*-valuation independent if for $q_i \in Q$ with $q_i = 0$ for all but finitely many $i \in I$, we have

$$v(\sum_{i\in I} q_i x_i) = \min_{i\in I, q_i\neq 0} \{v(x_i)\}.$$

Remark 3.2. $\mathcal{B} \subseteq V \setminus \{0\}$ *Q*-valuation independent \Rightarrow *Q*-linear independent.

(Otherwise $\exists q_i \neq 0$ with $\sum q_i x_i = 0$ and $v(\sum q_i x_i) = \infty$).

 $\mathbf{2}$

A

Proposition 3.3. (Characterization of valuation independence)

Let $\mathcal{B} \subseteq V \setminus \{0\}$. Then \mathcal{B} is Q-valuation independent if and only if $\forall n \in \mathbb{N}, \forall b_1, \ldots, b_n \in \mathcal{B}$ pairwise distinct with $v(b_1) = \cdots = v(b_n) = \gamma$, the coefficients

$$\pi(\gamma, b_1), \ldots, \pi(\gamma, b_n) \in B(\gamma)$$

are Q-linear independent in $B(\gamma)$.

Proof.

 (\Rightarrow) Let $b_1, \ldots, b_n \in \mathcal{B}$ with $v(b_1) = \cdots = v(b_n) = \gamma$ and suppose for a contradiction that

$$\pi(\gamma, b_1), \ldots, \pi(\gamma, b_n) \in B(\gamma)$$

are not Q-linear independent. So there are $q_1, \ldots, q_n \in Q$ non-zero such that $\pi(\gamma, \sum q_i b_i) = 0$ and $v(\sum q_i b_i) > \gamma$, contradiction.

 (\Leftarrow) We show that

$$v(\sum q_i b_i) = \min\{v(b_i)\} = \gamma.$$

Since $\pi(\gamma, b_1), \ldots, \pi(\gamma, b_n)$ are Q-linear independent in $B(\gamma)$, also

$$\pi(\gamma, \sum_{i=0}^{n} q_i b_i) \neq 0,$$

i.e. $v(\sum q_i b_i) \leq \gamma$. On the other hand $v(\sum q_i b_i) \geq \gamma$, so $v(\sum q_i b_i) = \gamma = \min\{v(b_i)\}$.

4. MAXIMAL VALUATION INDEPENDENCE

By Zorn's lemma, maximal valuation independent sets exist:

Corollary 4.1. (Characterization of maximal valuation independent sets) $\mathcal{B} \subseteq V \setminus \{0\}$ is maximal valuation independent if and only if $\forall \gamma \in v(V)$

$$\mathcal{B}_{\gamma} := \{ \pi(\gamma, b) : b \in \mathcal{B}; v(b) = \gamma \}$$

is a Q-vector space basis of $B(V, \gamma)$.

Corollary 4.2. Let $\mathcal{B} \subseteq V \setminus \{0\}$ be valuation independent in (V, v). Then \mathcal{B} is maximal valuation independent if and only if the extension

$$\langle \mathcal{B} \rangle := (V_0, v_{|V_0}) \subseteq (V, v)$$

is an immediate extension.

Proof.

SALMA KUHLMANN

(⇒) Assume $\mathcal{B} \subseteq V$ is maximal valuation independent. We show $V_0 \subseteq V$ is immediate.

If not $\exists x \in V, x \neq 0$ such that

$$\forall y \in V_0: \ v(x-y) \leq v(x).$$

We will show that in this case $\mathcal{B} \cup \{x\}$ is valuation independent (which will contradict our maximality assumption).

Consider $v(y_0 + qx), q \in Q, q \neq 0, y_0 \in V_0$. Set

 $y := -y_0/q.$

We claim that $v(y_0 + qx) = v(x - y) = \min\{v(x), v(y)\}$ Fact.

$$v(x-y) \leqslant v(x) \iff v(x-y) = \min\{v(x), v(y)\}.$$

Proof of the fact. (\Leftarrow) is clear. To see (\Rightarrow), assume that $v(x-y) > \min\{v(x), v(y)\}$. If $\min\{v(x), v(y)\} = v(x)$, then we have a contradiction. If $\min\{v(x), v(y)\} = v(y) < v(x)$, then v(x-y) = v(y) > v(y), again a contradiction.

(⇐) Now assume $(V_0, v) \subseteq (V, v)$ is immediate. We show that \mathcal{B} is maximal valuation independent.

If not, there is $\gamma \in v(V)$ such that B_{γ} is not a basis for $B(V, \gamma)$. Let $b \in B(V, \gamma), b \notin \langle \mathcal{B}_{\gamma} \rangle$.

$$b \in V^{\gamma}/V_{\gamma} \implies b = x + V_{\gamma},$$

with $x \in V$, $v(x) = \gamma$.

Claim: $\forall y \in V_0 \ v(x-y) \leq v(x)$ (contradicting that the extension is immediate). This follows by Characterization of immediate extensions (Lemma 2.2).

5. VALUATION BASIS

Definition 5.1. \mathcal{B} is a *Q*-valuation basis of (V, v) if

(1) \mathcal{B} is a *Q*-basis,

(2) \mathcal{B} is *Q*-valuation independent.

Remark 5.2. \mathcal{B} *Q*-valuation basis $\Rightarrow \mathcal{B}$ is maximal valuation independent.

Example 5.3. $(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min})$ admits a valuation basis.

Proof. Let \mathcal{B}_{γ} be a *Q*-basis of $B(\gamma)$ for $\gamma \in \Gamma$ and consider

$$\mathcal{B} := \bigcup_{\gamma \in \Gamma} \{ b \chi_{\{\gamma\}}; \ b \in \mathcal{B}_{\gamma} \},$$

where $\forall \gamma \in \Gamma$

 $\chi_{\gamma} \colon \Gamma \longrightarrow Q$

4

$$\chi_{\gamma}(\gamma') = \begin{cases} 1 & \text{if } \gamma = \gamma' \\ 0 & \text{if } \gamma \neq \gamma'. \end{cases}$$

Corollary 5.4. (V, v) with skeleton $S(V) = [\Gamma, B(\gamma)]$ admits a valuation basis if and only if

$$(V, v) \cong (\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}).$$

Proof.

 (\Leftarrow) Clear.

(⇒) Let \mathcal{B} be a valuation basis for (V, v). Then $\mathcal{B} = \{b_i : i \in I\}$ is maximal valuation independent. For every $b_i \in \mathcal{B}, v(b_i) = \gamma$, define

$$h(b_i) = \pi(\gamma, b_i)\chi_{\gamma}$$

and extend it to V by linearity (note that $v(b_i) = v_{\min}(h(b_i))$).

Corollary 5.5. Assume $S(V) = [\Gamma, B(\gamma)]$. Then

$$(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}) \ \hookrightarrow \ (V, v).$$

Proof. By Zorn's lemma, let $\mathcal{B} \subset V \setminus \{0\}$ be maximal valuation independent. Set

$$V_0 := Q \langle \mathcal{B} \rangle.$$

Then \mathcal{B} is a valuation basis for V_0 and $V_0 \subseteq V$ (immediate), so $S(V_0) = S(V) = [\Gamma, B(\gamma)]$ and

$$(V_0, v) \cong (\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min}).$$

5