REAL ALGEBRAIC GEOMETRY LECTURE NOTES

(25: 26/01/10)

SALMA KUHLMANN

Contents

1. Introduction 1
2. Pseudo-convergence and maximality 1
3. Pseudo-limits 3
4. Cofinal subsets 4

1. Introduction

Our aim for this and next lecture is to complete the proof of Hahn's embedding Theorem:

Let (V, v) be a Q-valued vector space with $S(V)=[\Gamma, B(\gamma)]$.
Let $\left\{x_{i}: i \in I\right\} \subset V$ be maximal valuation independent and

$$
h: V_{0}=\left(\left\langle\left\{x_{i}: i \in I\right\}\right\rangle, v\right) \xrightarrow{\sim}\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min }\right) .
$$

Then h extends to a valuation preserving embedding (i.e. an isomorphism onto a valued subspace)

$$
\tilde{h}:(V, v) \hookrightarrow\left(\mathrm{H}_{\gamma \in \Gamma} B(\gamma), v_{\min }\right) .
$$

The picture is the following:

2. Pseudo-convergence and maximality

Definition 2.1. A valued Q-vector space (V, v) is said to be maximally valued if it admits no proper immediate extension.

Definition 2.2. A well ordered set $S=\left\{a_{\rho}: \rho \in \lambda\right\} \subset V$ without a last element is said to be pseudo-convergent (or pseudo-Cauchy) if for every $\rho<\sigma<\tau$ we have

$$
v\left(a_{\sigma}-a_{\rho}\right)<v\left(a_{\tau}-a_{\sigma}\right)
$$

Example 2.3.

(a) Let $V=\left(\mathrm{H}_{\mathbb{N}_{0}} \mathbb{R}, v_{\min }\right)$, where $\mathbb{N}_{0}=\{0,1,2, \ldots\}$. An element $s \in V$ can be viewed as a function $s: \mathbb{N}_{0} \rightarrow \mathbb{R}$. Consider

$$
\begin{aligned}
& a_{0}=(1,0,0,0,0 \ldots) \\
& a_{1}=(1,1,0,0,0 \ldots) \\
& a_{2}=(1,1,1,0,0 \ldots)
\end{aligned}
$$

The sequence $\left\{a_{n}: n \in \mathbb{N}_{0}\right\} \subset V$ is pseudo-Cauchy.
(b) Take V as above and $s \in V$ with

$$
\operatorname{support}(s)=\mathbb{N}_{0}
$$

i.e. $s_{i}:=s(i) \neq 0 \forall i \in \mathbb{N}_{0}$. Define the sequence

$$
\begin{aligned}
b_{0} & =\left(s_{0}, 0,0,0,0 \ldots\right) \\
b_{1} & =\left(s_{0}, s_{1}, 0,0,0 \ldots\right) \\
b_{2} & =\left(s_{0}, s_{1}, s_{2}, 0,0 \ldots\right)
\end{aligned}
$$

For every $l<m<n \in \mathbb{N}_{0}$, we have

$$
l+1=v_{\min }\left(b_{m}-b_{l}\right)<v_{\min }\left(b_{n}-b_{m}\right)=m+1
$$

Therefore $\left\{b_{n}: n \in \mathbb{N}_{0}\right\} \subset V$ is pseudo-Cauchy.

Lemma 2.4. If $S=\left\{a_{\rho}\right\}_{\rho \in \lambda}$ is pseudo-convergent then
(i) either $v\left(a_{\rho}\right)<v\left(a_{\sigma}\right)$ for all $\rho<\sigma \in \lambda$,
(ii) or $\exists \rho_{0} \in \lambda$ such that $v\left(a_{\rho}\right)=v\left(a_{\sigma}\right) \forall \rho, \sigma \geqslant \rho_{0}$.

Proof. Assume (i) does not hold, i.e. $v\left(a_{\rho}\right) \geqslant v\left(a_{\sigma}\right)$ for some $\rho<\sigma$. Then we claim that

$$
v\left(a_{\tau}\right)=v\left(a_{\sigma}\right) \quad \forall \tau>\sigma
$$

Otherwise, $v\left(a_{\tau}-a_{\sigma}\right)=\min \left\{v\left(a_{\tau}\right), v\left(a_{\sigma}\right)\right\} \leqslant v\left(a_{\sigma}\right)$.
But $v\left(a_{\sigma}-a_{\rho}\right) \geqslant v\left(a_{\sigma}\right)$, contradicting 2.2.

Notation 2.5. In case (ii) define

$$
\operatorname{Ult} S:=v\left(a_{\rho_{0}}\right)=v\left(a_{\rho}\right) \quad \forall \rho \geqslant \rho_{0}
$$

Lemma 2.6. If $\left\{a_{\rho}\right\}$ is pseudo-convergent then for all $\rho<\sigma$ we have

$$
v\left(a_{\sigma}-a_{\rho}\right)=v\left(a_{\rho+1}-a_{\rho}\right)
$$

Proof. We may assume $\sigma>\rho+1$ (so $\rho<\rho+1<\sigma$). From

$$
v\left(a_{\rho+1}-a_{\rho}\right)<v\left(a_{\sigma}-a_{\rho+1}\right)
$$

and the identity

$$
a_{\sigma}-a_{\rho}=\left(a_{\sigma}-a_{\rho+1}\right)+\left(a_{\rho+1}-a_{\rho}\right)
$$

we deduce that

$$
\begin{aligned}
v\left(a_{\sigma}-a_{\rho}\right) & =\min \left(v\left(a_{\sigma}-a_{\rho+1}\right), v\left(a_{\rho+1}-a_{\rho}\right)\right) \\
& =v\left(a_{\rho+1}-a_{\rho}\right)
\end{aligned}
$$

Notation 2.7.

$$
\begin{aligned}
\gamma_{\rho}: & =v\left(a_{\rho+1}-a_{\rho}\right) \\
& =v\left(a_{\sigma}-a_{\rho}\right) \quad \forall \sigma>\rho
\end{aligned}
$$

Remark 2.8. Since $\rho<\rho+1<\rho+2$, we have $\gamma_{\rho}<\gamma_{\rho+1}$ for all ρ.

3. Pseudo-LIMits

Definition 3.1. Let $S=\left\{a_{\rho}\right\}$ be a pseudo-convergent set. We say that $x \in V$ is a pseudo-limit of S if

$$
v\left(x-a_{\rho}\right)=\gamma_{\rho} \quad \text { for all } \rho
$$

Remark 3.2.

(i) If $v\left(a_{\rho}\right)<v\left(a_{\sigma}\right)$ for $\rho<\sigma$, then $x=0$ is a pseudo-limit.
(ii) If 0 is not a pseudo-limit and x is a pseudo-limit, then $v(x)=\operatorname{Ult} S$.

Example 3.3.

(a) In Example 2.3(a), the costant function 1:

$$
a=(1,1, \ldots)
$$

is a pseudo-limit of the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$.
(b) In Example $2.3(b), s$ is a pseudo-limit of $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}}$.

Definition 3.4. (V, v) is pseudo-complete if every pseudo-convergent sequence has a pseudo-limit in V.

Definition 3.5. Let $S=\left\{a_{\rho}\right\}$ be pseudo-convergent. The breadth (Breite) B of S is defined to be the following subset of V :

$$
B(S)=\left\{y \in V: v(y)>\gamma_{\rho} \forall \rho\right\} .
$$

Lemma 3.6. Let $\left\{a_{\rho}\right\}$ be pseudo-convergent with breadth B and let $x \in V$ be a pseudo-limit. Then an element of V is a pseudo-limit of $\left\{a_{\rho}\right\}$ if and only if it is of the form $x+y$ with $y \in B$.
Proof.
(\Rightarrow) Let z be another pseudo-limit of $\left\{a_{\rho}\right\}$. It follows from

$$
x-z=\left(x-a_{\rho}\right)-\left(z-a_{\rho}\right)
$$

that

$$
v(x-z) \geqslant \min \left\{v\left(x-a_{\rho}\right), v\left(z-a_{\rho}\right)\right\}=\gamma_{\rho} \quad \forall \rho
$$

Since γ_{ρ} is increasing, it follows that $v(x-z)>\gamma_{\rho}$ for all ρ. So $z \in B$ as required.
(\Leftarrow) If $y \in B$ then $v(y)>\gamma_{\rho}=v\left(x-a_{\rho}\right)$ for all ρ. Then

$$
v\left(x+y-a_{\rho}\right)=v\left(x-a_{\rho}+y\right)=\min \left\{v\left(x-a_{\rho}\right), v(y)\right\}=\gamma_{\rho} \quad \forall \rho
$$

4. Cofinal subsets

Definition 4.1. Let Γ be a totally ordered set. A subset $A \subset \Gamma$ is cofinal in Γ if

$$
\forall \gamma \in \Gamma \exists a \in A \text { with } \gamma \leqslant a .
$$

Example 4.2. If $\Gamma=[0,1] \subset R$, then for instance $A=\{1\}$ is cofinal in Γ.

Lemma 4.3. Let Γ be a totally ordered set. Then there is a well ordered cofinal subset $A \subset \Gamma$. Moreover if Γ has no last element, then also A has no last element.

