REAL ALGEBRAIC GEOMETRY LECTURE NOTES (27: 02/02/10)

SALMA KUHLMANN

Contents

1. Ordered abelian groups 1
2. Archimedean groups 2
3. Archimedean equivalence 2

1. ORDERED ABELIAN GROUPS

Definition 1.1. $(G,+, 0,<)$ is an ordered abelian group if $(G,+, 0)$ is an abelian group and $<$ is a total order on G such that for every $a, b, c \in G$

$$
a \leqslant b \Rightarrow a+c \leqslant b+c .
$$

Definition 1.2. A subgroup C of an ordered abelian group G is convex if $\forall c_{1}, c_{2} \in C$ and $\forall x \in G$

$$
c_{1}<x<c_{2} \Rightarrow x \in C
$$

Examples 1.3. $C=\{0\}$ and $C=G$ are convex subgroups.

Definition 1.4. Let G be an abelian ordered group, $x \in G, x \neq 0$.
We define:

$$
\begin{aligned}
C_{x} & :=\bigcap\{C: C \text { is a convex subgroup of } G \text { and } x \in C\} . \\
D_{x} & :=\bigcup\{D: D \text { is a convex subgroup of } G \text { and } x \notin D\} .
\end{aligned}
$$

A convex subgroup C of G is said to be principal if there is some $x \in G$ such that $C=C_{x}$.

Proposition 1.5.

(1) D_{x} is a proper convex subgroup of C_{x}.
(2) D_{x} is the largest proper convex subgroup of C_{x}, i.e. if C is a convex subgroup such that

$$
D_{x} \subseteq C \subseteq C_{x}
$$

$$
\text { then } C=D_{x} \text { or } C=C_{x} \text {. }
$$

(3) It follows that the ordered abelian group C_{x} / D_{x} has no non-trivial proper convex subgroup.

2. Archimedean groups

Definition 2.1. Let $(A,+, 0,<)$ be an ordered abelian group. We say that A is archimedean if for all non-zero $a_{1}, a_{2} \in A$:

$$
\exists n \in \mathbb{N}: \quad n\left|a_{1}\right|>\left|a_{2}\right| \text { and } n\left|a_{2}\right|>\left|a_{1}\right|,
$$

where for every $a \in A,|a|:=\max \{a,-a\}$.

Proposition 2.2. (Hölder) Every archimedean group is isomorphic to a subgroup of $(\mathbb{R},+, 0,<)$.

Proposition 2.3. A is archimedean if and only if A has no non-trivial proper convex subgroup.

Therefore if G is an ordered group and $x \in G$ with $x \neq 0$, the quotient C_{x} / D_{x} is archimedean (by 2.3) and can be embedded in ($\mathbb{R},+, 0,<$) (by 2.2).

Definition 2.4. Let G be an ordered group, $x \in G, x \neq 0$. We say that

$$
B_{x}:=C_{x} / D_{x}
$$

is the archimedean component of x in G.

3. Archimedean equivalence

Definition 3.1. An abelian group G is divisible if for every $x \in G$ and for every $n \in \mathbb{N}$ there is $y \in G$ such that $x=n y$.

Remark 3.2. Any ordered divisible abelian group G is a \mathbb{Q}-vector space and G can be viewed as a valued \mathbb{Q}-vector space in a natural way.

Definition 3.3. (archimedean equivalence) For every $x, y \in G$ we define

$$
\begin{aligned}
x \sim^{+} y & \Leftrightarrow \exists n \in \mathbb{N} \quad n|x| \geqslant|y| \text { and } n|y| \geqslant|x| . \\
x \ll^{+} y & \Leftrightarrow \forall n \in \mathbb{N} \quad n|x|<|y| .
\end{aligned}
$$

Proposition 3.4.

(1) \sim^{+}is an equivalence relation.
(2) \sim^{+}is compatible with \ll^{+}:

$$
\begin{array}{lllll}
x \ll^{+} y & \text { and } & x \sim^{+} z & \Rightarrow & z \ll^{+} y, \\
x \ll^{+} y & \text { and } & y \sim^{+} z & \Rightarrow & x \ll^{+} z .
\end{array}
$$

Because of the last proposition we can define an order $<_{\Gamma}$ on $\Gamma:=G / \sim^{+}=$ $\{[x]: x \in G\}$ as follows:

$$
[y]<\Gamma[x] \quad \Leftrightarrow \quad x \ll^{+} y .
$$

Proposition 3.5.

(1) Γ is a totally ordered set under $<\Gamma$.
(2) The map

$$
\begin{aligned}
v: G & \longrightarrow \Gamma \cup\{\infty\} \\
0 & \mapsto
\end{aligned} \infty
$$

is a valuation on G as a \mathbb{Z}-module:
For every $x, y \in G$:
$-v(x)=\infty \quad$ iff $\quad x=0$,

- $v(n x)=v(x) \quad \forall n \in \mathbb{Z}, n \neq 0$,
- $v(x+y) \geqslant \min \{v(x), v(y)\}$.
(3) if $x \in G, x \neq 0, v(x)=\gamma$, then

$$
\begin{aligned}
G^{\gamma} & :=\{a \in G: v(a) \geqslant \gamma\}=C_{x} . \\
G_{\gamma} & :=\{a \in G: v(a)>\gamma\}=D_{x} .
\end{aligned}
$$

So

$$
B_{x}=C_{x} / D_{x}=G^{\gamma} / G_{\gamma}=B(\gamma)
$$

is the archimedean component associated to γ.

