REAL ALGEBRAIC GEOMETRY LECTURE NOTES (27: 02/02/10)

SALMA KUHLMANN

Contents

1.	Ordered abelian groups	1
2.	Archimedean groups	2
3.	Archimedean equivalence	2

1. Ordered Abelian groups

Definition 1.1. (G, +, 0, <) is an ordered abelian group if (G, +, 0) is an abelian group and < is a total order on G such that for every $a, b, c \in G$

$$a \leqslant b \Rightarrow a + c \leqslant b + c.$$

Definition 1.2. A subgroup *C* of an ordered abelian group *G* is **convex** if $\forall c_1, c_2 \in C$ and $\forall x \in G$

$$c_1 < x < c_2 \implies x \in C.$$

Examples 1.3. $C = \{0\}$ and C = G are convex subgroups.

Definition 1.4. Let G be an abelian ordered group, $x \in G$, $x \neq 0$. We define:

 $C_x := \bigcap \{C : C \text{ is a convex subgroup of } G \text{ and } x \in C\}.$ $D_x := \bigcup \{D : D \text{ is a convex subgroup of } G \text{ and } x \notin D\}.$

A convex subgroup C of G is said to be **principal** if there is some $x \in G$ such that $C = C_x$.

SALMA KUHLMANN

Proposition 1.5.

 $\mathbf{2}$

- (1) D_x is a proper convex subgroup of C_x .
- (2) D_x is the largest proper convex subgroup of C_x , i.e. if C is a convex subgroup such that

$$D_x \subseteq C \subseteq C_x$$

then $C = D_x$ or $C = C_x$.

(3) It follows that the ordered abelian group C_x/D_x has no non-trivial proper convex subgroup.

2. Archimedean groups

Definition 2.1. Let (A, +, 0, <) be an ordered abelian group. We say that A is **archimedean** if for all non-zero $a_1, a_2 \in A$:

$$\exists n \in \mathbb{N}: n|a_1| > |a_2| \text{ and } n|a_2| > |a_1|,$$

where for every $a \in A$, $|a| := \max\{a, -a\}$.

Proposition 2.2. (Hölder) Every archimedean group is isomorphic to a subgroup of $(\mathbb{R}, +, 0, <)$.

Proposition 2.3. A is archimedean if and only if A has no non-trivial proper convex subgroup.

Therefore if G is an ordered group and $x \in G$ with $x \neq 0$, the quotient C_x/D_x is archimedean (by 2.3) and can be embedded in $(\mathbb{R}, +, 0, <)$ (by 2.2).

Definition 2.4. Let G be an ordered group, $x \in G$, $x \neq 0$. We say that

$$B_x := C_x / D_x$$

is the archimedean component of x in G.

3. Archimedean equivalence

Definition 3.1. An abelian group G is **divisible** if for every $x \in G$ and for every $n \in \mathbb{N}$ there is $y \in G$ such that x = ny.

Remark 3.2. Any ordered divisible abelian group G is a \mathbb{Q} -vector space and G can be viewed as a valued \mathbb{Q} -vector space in a natural way.

Definition 3.3. (archimedean equivalence) For every $x, y \in G$ we define

 $\begin{array}{rcl} x \ \sim^+ \ y & \Leftrightarrow \ \exists \, n \in \mathbb{N} & n |x| \geqslant |y| \ \text{ and } \ n |y| \geqslant |x|. \\ x \ <<^+ \ y & \Leftrightarrow \ \forall \, n \in \mathbb{N} & n |x| < |y|. \end{array}$

Proposition 3.4.

- (1) \sim^+ is an equivalence relation.
- (2) \sim^+ is compatible with $<<^+$:

$$\begin{array}{rcl} x<<^+y & and & x\sim^+z & \Rightarrow & z<<^+y, \\ x<<^+y & and & y\sim^+z & \Rightarrow & x<<^+z. \end{array}$$

Because of the last proposition we can define an order $<_{\Gamma}$ on $\Gamma := G/\sim^+ = \{[x] : x \in G\}$ as follows:

$$[y] <_{\Gamma} [x] \quad \Leftrightarrow \quad x <<^+ y.$$

Proposition 3.5.

- (1) Γ is a totally ordered set under $<_{\Gamma}$.
- (2) The map

$$v: G \longrightarrow \Gamma \cup \{\infty\}$$

$$0 \longmapsto \infty$$

$$x \longmapsto [x] \quad (if \ x \neq 0)$$

is a valuation on G as a \mathbb{Z} -module:

For every
$$x, y \in G$$
:
- $v(x) = \infty$ iff $x = 0$,
- $v(nx) = v(x) \quad \forall n \in \mathbb{Z}, n \neq 0$,
- $v(x+y) \ge \min\{v(x), v(y)\}.$

(3) if $x \in G$, $x \neq 0$, $v(x) = \gamma$, then

$$G^{\gamma} := \{ a \in G : v(a) \ge \gamma \} = C_x.$$

$$G_{\gamma} := \{ a \in G : v(a) > \gamma \} = D_x.$$

So

$$B_x = C_x / D_x = G^{\gamma} / G_{\gamma} = B(\gamma)$$

is the archimedean component associated to γ .