REAL ALGEBRAIC GEOMETRY LECTURE NOTES

(29: 09/02/10)

SALMA KUHLMANN

Contents

1. Hardy fields 1
2. The natural valuation of a Hardy field

1. Hardy fields

Definition 1.1. (Hardy field) Consider the set of all real valued functions defined on positive half lines:

$$
\mathcal{F}:=\{f \mid f:[a, \infty) \rightarrow \mathbb{R} \text { or } f:(a, \infty) \rightarrow \mathbb{R}, a \in \mathbb{R}\}
$$

For every $f, g \in \mathcal{F}$ we define

$$
f \sim g \Leftrightarrow \exists N \in \mathbb{N} \text { s.t. } f(x)=g(x) \forall x \geqslant N .
$$

When $f \sim g$ we say that f and g have the same germ at ∞.
We identify $f \in \mathcal{F}$ with its germ $[f]$.
We denote by \mathcal{G} the set of all germs. Note that \mathcal{G} is a commutative ring with 1 by:

$$
\begin{aligned}
{[f]+[g] } & :=[f+g] \\
{[f] \cdot[g] } & :=[f \cdot g]
\end{aligned}
$$

A subring H of \mathcal{G} is a Hardy field if it is a field with respect to the operations above and it is closed under differentiation, i.e.

$$
f \in H \Rightarrow f^{\prime} \in H
$$

Remark 1.2. (defininig a total order on a Hardy field). Let H be a Hardy field and $f \in H, f \neq 0$.

Since $1 / f \in H, f(x) \neq 0$ ultimately. Moreover since $f^{\prime} \in H, f$ is ultimately differentiable and thus ultimately continuous.

It follows that $\operatorname{sign}(f)$ is constant ultimately (i.e. f is strictly positive on some interval (N, ∞) or f is strictly negative on some interval $(N, \infty))$.

This key property allows us to define a total order on H :

Definition 1.3. Let H be a Hardy field. For every f, g we define

$$
f>g \Leftrightarrow f-g \text { is ultimately positive. }
$$

Lemma 1.4. $>$ above is an ordering on H.

Examples 1.5.

(1) \mathbb{Q} and \mathbb{R} are Hardy fields consisting of just constant germs. They are archimedean Hardy fields.
(2) Let x denote the germ of the identity function. Then $\mathrm{x}>\mathbb{R}$ and $\mathbb{R}(\mathrm{x})$ is a non-archimedean Hardy field.

Lemma 1.6. (Monotonicity) Let H be a Hardy field and $f \in H, f^{\prime} \neq 0$. Since f^{\prime} is ultimately positive or negative, it follows that f is ultimately increasing or decreasing. Therefore

$$
\exists \lim _{x \rightarrow \infty} f(x) \in \mathbb{R} \cup\{-\infty,+\infty\}
$$

2. The natural valuation of a Hardy field

Definition 2.1. (Valuation on H). Let H be a Hardy field. Define for $f, g \neq 0$

$$
f \sim g \Leftrightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=r \in \mathbb{R} \backslash\{0\}
$$

This is an equivalence relation. Denote the equivalence class of f by $v(f)$. Define

$$
v(f)+v(g):=v(f g),
$$

and

$$
v(f)>v(g) \Leftrightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
$$

Lemma 2.2. The map

$$
\begin{aligned}
H & \longrightarrow H / \sim \cup\{\infty\} \\
0 \neq f & \mapsto \quad v(f) \\
0 & \mapsto
\end{aligned}
$$

is a valuation and it is equivalent to the natural valuation.

Remark 2.3.

$$
\begin{aligned}
R_{v} & =\left\{f: \lim _{x \rightarrow \infty} f(x) \in \mathbb{R}\right\} . \\
I_{v} & =\left\{f: \lim _{x \rightarrow \infty} f(x)=0\right\} . \\
\mathcal{U}_{v} & =\left\{f: \lim _{x \rightarrow \infty} f(x) \in \mathbb{R} \backslash\{0\}\right\} .
\end{aligned}
$$

