REAL ALGEBRAIC GEOMETRY LECTURE NOTES (29: 09/02/10)

SALMA KUHLMANN

CONTENTS

1.	Hardy fields	1
2.	The natural valuation of a Hardy field	2

1. HARDY FIELDS

Definition 1.1. (Hardy field) Consider the set of all real valued functions defined on positive half lines:

$$\mathcal{F} := \{ f \mid f \colon [a, \infty) \to \mathbb{R} \text{ or } f \colon (a, \infty) \to \mathbb{R}, \, a \in \mathbb{R} \}.$$

For every $f, g \in \mathcal{F}$ we define

$$f \sim g \iff \exists N \in \mathbb{N} \text{ s.t. } f(x) = g(x) \ \forall x \ge N.$$

When $f \sim g$ we say that f and g have the same germ at ∞ . We identify $f \in \mathcal{F}$ with its germ [f].

We denote by \mathcal{G} the set of all germs. Note that \mathcal{G} is a commutative ring with 1 by:

$$[f] + [g] := [f + g]$$

 $[f] \cdot [g] := [f \cdot g]$

A subring H of \mathcal{G} is a **Hardy field** if it is a field with respect to the operations above and it is closed under differentiation, i.e.

$$f \in H \Rightarrow f' \in H.$$

Remark 1.2. (defining a total order on a Hardy field). Let H be a Hardy field and $f \in H$, $f \neq 0$.

Since $1/f \in H$, $f(x) \neq 0$ ultimately. Moreover since $f' \in H$, f is ultimately differentiable and thus ultimately continuous.

It follows that sign(f) is constant ultimately (i.e. f is strictly positive on some interval (N, ∞) or f is strictly negative on some interval (N, ∞)).

This key property allows us to define a total order on H:

Definition 1.3. Let H be a Hardy field. For every f, g we define

 $f > g \Leftrightarrow f - g$ is ultimately positive.

Lemma 1.4. > above is an ordering on H.

Examples 1.5.

- (1) \mathbb{Q} and \mathbb{R} are Hardy fields consisting of just constant germs. They are archimedean Hardy fields.
- (2) Let x denote the germ of the identity function. Then $x > \mathbb{R}$ and $\mathbb{R}(x)$ is a non-archimedean Hardy field.

Lemma 1.6. (Monotonicity) Let H be a Hardy field and $f \in H$, $f' \neq 0$. Since f' is ultimately positive or negative, it follows that f is ultimately increasing or decreasing. Therefore

$$\exists \lim_{x \to \infty} f(x) \in \mathbb{R} \cup \{-\infty, +\infty\}.$$

2. The natural valuation of a Hardy field

Definition 2.1. (Valuation on H). Let H be a Hardy field. Define for $f, g \neq 0$

$$f \sim g \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = r \in \mathbb{R} \setminus \{0\}.$$

This is an equivalence relation. Denote the equivalence class of f by v(f). Define

$$v(f) + v(g) := v(fg),$$

and

$$v(f) > v(g) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

Lemma 2.2. The map

$$\begin{array}{rcl} H & \longrightarrow & H/\sim \,\cup\,\{\infty\} \\ 0 \neq f & \mapsto & v(f) \\ 0 & \mapsto & \infty \end{array}$$

is a valuation and it is equivalent to the natural valuation.

Remark 2.3.

$$R_{v} = \{f : \lim_{x \to \infty} f(x) \in \mathbb{R}\}.$$
$$I_{v} = \{f : \lim_{x \to \infty} f(x) = 0\}.$$
$$\mathcal{U}_{v} = \{f : \lim_{x \to \infty} f(x) \in \mathbb{R} \setminus \{0\}\}.$$