Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 10 - Solution

Theorem 0.1 (Cell Decomposition $=$ Zell Zerlegung) Let R be a real closed field . Any semi-algebraic subset $A \subset R^{n}$ is the disjoint union of a finite number of semialgebraic sets, each of them semi-algebraically homeomorphic to an open hypercube $] 0,1\left[{ }^{d} \subset R^{d}\right.$, for some $d \in \mathbb{N}$ (with $] 0,1\left[{ }^{0}\right.$ being a point).

1. This exercise concerns the proof of this Cell Decomposition Theorem, which is done by induction on $n \in \mathbb{N}$. Concerning the induction step, one considers a semi-algebraic subset $A \subset R^{n+1}$ and the polynomials $f_{1}(\underline{X}, Y), \ldots, f_{s}(\underline{X}, Y)$ of $R[\underline{X}, Y]$ which define A. The proof is done showing that there exists a slicing $\left(A_{i},\left\{\xi_{i, j}, j=1, \ldots, l_{i}\right\}\right)_{i=1, \ldots, m}$ of the family $f_{1}(\underline{X}, Y), \ldots, f_{s}(\underline{X}, Y)$ with respect to the variable Y. Our purpose here is to clarify:

- the role in this proof of adding the derivatives with respect to Y to the family $f_{1}(\underline{X}, Y), \ldots, f_{s}(\underline{X}, Y)$;
- how we can remove the roots $\xi_{i, j}(\underline{X})$ coming from these new polynomials and obtain the right slicing for the initial family.

Consider the following two-variables polynomial

$$
f(X, Y)=\left(X+(Y-1)^{2}\right)^{2}\left(X-(Y+1)^{2}\right)^{2}
$$

of $R[X, Y]$ and the corresponding semi-algebraic subset of R^{2}

$$
A:=\left\{(x, y) \in R^{2} \mid f(x, y)=0\right\} .
$$

(a)

- If $x>0$, the two roots of $f(x, Y)$ are

$$
y_{1}(x)=-\sqrt{x}+1 \text { and } y_{2}(x)=\sqrt{x}+1 .
$$

- If $x=0$, the two roots of $f(x, Y)$ are

$$
y_{1}(0)=-1 \text { and } y_{2}(x)=1 .
$$

- If $x<0$, the two roots of $f(x, Y)$ are

$$
y_{1}(x)=-\sqrt{-x}-1 \text { and } y_{2}(x)=\sqrt{-x}-1 .
$$

Note that for any x, we have $y_{1}(x)<y_{2}(x)$, and for any $x, y \in R, f(x, y) \geq 0$. So, for any $x \in R$, the sign matrix of $f(x, y)$ is

$$
\begin{gathered}
y \\
\operatorname{Sign}_{R}(f(x, y))
\end{gathered} I_{0} y_{1}(x) I_{1} y_{2}(x) I_{2} .
$$

Since the sign matrix is constant with respect to x, we may a priori have a slicing $\left(A_{1}=R,\left\{\xi_{1}(x)<\xi_{2}(x)\right\}\right)$ of f where $\xi_{j}(x):=y_{j}(x)$ for $j=1,2$.
(b) The picture of $A:=\left\{(x, y) \in R^{2} \mid f(x, y)=0\right\}$ is

The functions y_{1} and y_{2} are discontinuous at 0 . So $\left(R,\left\{\xi_{1}(x)<\xi_{2}(x)\right\}\right)$ with $\xi_{j}(x):=y_{j}(x)$ for $j=1,2$ is not a slicing of f.

The semi-algebraic subset

$$
\tilde{A}:=\left\{(x, y) \in R^{2} \mid f(x, y)=0=f^{\prime}(x, y)\right\}
$$

of R^{2} can be represented as

(c) The derivative with respect to Y of $f(X, Y)$ is

$$
f^{\prime}(X, Y)=-8\left(X+(Y-1)^{2}\right)\left(X-(Y+1)^{2}\right)\left(Y^{3}-Y+X\right)
$$

For any $x \in R$, the discriminant of the cubic polynomial $Y^{3}-Y+x$ is $\Delta:=$ $x^{2}-\frac{4}{27} 1^{3}$. We have 3 cases:

- if $\Delta<0 \Leftrightarrow-\sqrt{\frac{4}{27}}<x<\sqrt{\frac{4}{27}}$, the cubic polynomial $Y^{3}-Y+x$ has 3 roots $y_{3}(x)<y_{4}(x)<y_{5}(x)$ and 2 sign changes.
- if $\Delta=0 \Leftrightarrow x= \pm \sqrt{\frac{4}{27}}$, the cubic polynomial $Y^{3}-Y+x$ has 2 roots $y_{3}(x)<y_{4}(x)$ and 1 sign change. For $x=-\sqrt{\frac{4}{27}}$, the sign change is at $y_{1}(x)$, and for $x=\sqrt{\frac{4}{27}}$, the sign change is at $y_{2}(x)$
- if $\Delta>0 \Leftrightarrow x<-\sqrt{\frac{4}{27}}$ or $x>\sqrt{\frac{4}{27}}$, the cubic polynomial $Y^{3}-Y+x$ has 2 roots $y_{3}(x)<y_{4}(x)$ and no sign change. It is >0 whenever $x<-\sqrt{\frac{4}{27}}$ and <0 whenever $x>\sqrt{\frac{4}{27}}$.

We obtain the following cases:

- if $x<-\sqrt{\frac{4}{27}}$, then $y_{1}(x)=-\sqrt{-x}+1<y_{3}(x)<y_{2}(x)=\sqrt{-x}+1$ and we
have

$$
\begin{aligned}
& \operatorname{Sign}_{R}\left(f, f^{\prime}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right) \\
& - \text { if } x=-\sqrt{\frac{4}{27}}=-\frac{2}{3 \sqrt{3}}, \text { then } y_{3}(x)=\frac{-1}{\sqrt{3}}<y_{1}(x)=-\sqrt{\frac{2}{3 \sqrt{3}}}+1< \\
& y_{4}(x)=\frac{2}{\sqrt{3}}<y_{2}(x)=\sqrt{\frac{2}{3 \sqrt{3}}}+1 \text { and we have } \\
& \operatorname{Sign}_{R}\left(f, f^{\prime}\right)=\left(\begin{array}{ccccccccc}
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
-1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right) \\
& - \text { if }-\sqrt{\frac{4}{27}}<x<0, \text { then } y_{3}(x)<y_{4}(x)<y_{1}(x)=-\sqrt{-x}+1<y_{5}(x)< \\
& y_{2}(x)=\sqrt{-x}+1 \text { and we have }
\end{aligned}
$$

$$
\operatorname{Sign}_{R}\left(f, f^{\prime}\right)=\left(\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right)
$$

- if $x=0$, then $y_{3}(0)=y_{1}(0)=-1<y_{4}(0)=0<y_{2}(0)=y_{5}(0)=1$ and we have

$$
\operatorname{Sign}_{R}\left(f, f^{\prime}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right)
$$

- if $0<x<\sqrt{\frac{4}{27}}$, then $y_{1}(x)=-\sqrt{x}-1<y_{3}(x)<y_{2}(x)=\sqrt{x}-1<$ $y_{4}(x)<y_{5}(x)$ and we have

$$
\operatorname{Sign}_{R}\left(f, f^{\prime}\right)=\left(\begin{array}{ccccccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right)
$$

- if $x=\sqrt{\frac{4}{27}}=\frac{2}{3 \sqrt{3}}$, then $y_{1}(x)=-\sqrt{\frac{2}{3 \sqrt{3}}}-1<y_{3}(x)=\frac{-2}{\sqrt{3}}<y_{2}(x)=$ $\sqrt{\frac{2}{3 \sqrt{3}}}-1<y_{4}(x)=\frac{1}{\sqrt{3}}$ and we have

$$
\operatorname{Sign}_{R}\left(f, f^{\prime}\right)=\left(\begin{array}{ccccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
-1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- if $x>\sqrt{\frac{4}{27}}$, then $y_{1}(x)=-\sqrt{x}-1<y_{3}(x)<y_{2}(x)=\sqrt{x}-1$ and we have

$$
\operatorname{Sign}_{R}\left(f, f^{\prime}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right)
$$

(d) The slicing of \tilde{A} is:

- the interval $\left.\tilde{A}_{1}=\right]-\infty,-\sqrt{\frac{4}{27}}\left[\right.$ and the maps $\left\{\tilde{\xi}_{1,1}(x)=y_{1}(x)=-\sqrt{-x}+\right.$ $\left.1<\tilde{\xi}_{1,2}(x)=y_{3}(x)<\tilde{\xi}_{1,3}(x)=y_{2}(x)=\sqrt{-x}+1\right\} ;$
- the singleton $\tilde{A}_{2}=\left\{-\sqrt{\frac{4}{27}}\right\}$ and the maps $\left\{\tilde{\xi}_{2,1}(x)=y_{3}(x)=\frac{-1}{\sqrt{3}}<\right.$
$\tilde{\xi}_{2,2}(x)=y_{1}(x)=-\sqrt{\frac{2}{3 \sqrt{3}}}+1<\tilde{\xi}_{2,3}(x)=y_{4}(x)=\frac{2}{\sqrt{3}}<\tilde{\xi}_{2,4}(x)=y_{2}(x)=$ $\left.\sqrt{\frac{2}{3 \sqrt{3}}}+1\right\} ;$
- the interval $\left.\tilde{A}_{3}=\right]-\sqrt{\frac{4}{27}}, 0\left[\right.$ and the maps $\left\{\tilde{\xi}_{3,1}(x)=y_{3}(x)<\tilde{\xi}_{3,2}(x)=\right.$ $y_{4}(x)<\tilde{\xi}_{3,3}(x)=y_{1}(x)=-\sqrt{-x}+1<\tilde{\xi}_{3,4}(x)=y_{5}(x)<\tilde{\xi}_{3,5}(x)=y_{2}(x)=$ $\sqrt{-x}+1\} ;$
- the singleton $\tilde{A}_{4}=\{0\}$ and the maps $\left\{\tilde{\xi}_{4,1}(0)=y_{1}(0)=y_{3}(0)=-1<\right.$ $\left.\tilde{\xi}_{4,2}(x)=y_{4}(0)=0<\tilde{\xi}_{4,3}(0)=y_{2}(x)=y_{5}(0)=1\right\} ;$
- the interval $\left.\tilde{A}_{5}=\right] 0, \sqrt{\frac{4}{27}}\left[\right.$ and the maps $\left\{\tilde{\xi}_{5,1}(x)=y_{1}(x)=-\sqrt{x}-1<\right.$ $\tilde{\xi}_{5,2}(x)=y_{3}(x)<\tilde{\xi}_{5,3}(x)=y_{2}(x)=\sqrt{x}-1<\tilde{\xi}_{5,4}(x)=y_{4}(x)<\tilde{\xi}_{5,5}(x)=$ $\left.y_{5}(x)\right\}$;
- the singleton $\tilde{A}_{6}=\left\{\sqrt{\frac{4}{27}}\right\}$ and the maps $\left\{\tilde{\xi}_{6,1}(x)=y_{1}(x)=-\sqrt{\frac{2}{3 \sqrt{3}}}-1<\right.$ $\tilde{\xi}_{6,2}(x)=y_{3}(x)=\frac{-2}{\sqrt{3}}<\tilde{\xi}_{6,3}(x)=y_{2}(x)=\sqrt{\frac{2}{3 \sqrt{3}}}-1<\tilde{\xi}_{6,4}(x)=y_{4}(x)=$ $\left.\frac{1}{\sqrt{3}}\right\} ;$
- the interval $\left.\tilde{A}_{7}=\right] \sqrt{\frac{4}{27}}, \infty\left[\right.$ and the maps $\left\{\tilde{\xi}_{7,1}(x)=y_{1}(x)=-\sqrt{x}-1<\right.$ $\left.\tilde{\xi}_{7,2}(x)=y_{3}(x)<\tilde{\xi}_{7,3}(x)=y_{2}(x)=\sqrt{x}-1\right\}$.
(e) Note that, for each A_{i}, we have either $\Gamma\left(\tilde{\xi}_{i, j}\right) \subset A$ or $\Gamma\left(\tilde{\xi}_{i, j}\right) \cap A=\emptyset$. We can only remove the $\tilde{\xi}_{i, j}$'s coming properly from $f^{\prime}(x, y)$, i.e. the parts for which A and \tilde{A} do not coincide. Thus we can remove the functions $\tilde{\xi}_{1,2}, \tilde{\xi}_{2,1}, \tilde{\xi}_{2,3}, \tilde{\xi}_{3,1}, \tilde{\xi}_{3,2}$, $\tilde{\xi}_{3,4}, \tilde{\xi}_{4,2}, \tilde{\xi}_{5,2}, \tilde{\xi}_{5,4}, \tilde{\xi}_{5,5}, \tilde{\xi}_{6,2}, \tilde{\xi}_{6,4}, \tilde{\xi}_{7,2}$, which correspond to the following curve $\left\{(x, y) \in R^{2} \mid y^{3}-y+x=0\right\}$ minus the 2 indicated points for $x=0$:

(f) The slicing of A is given by:
- the interval $\left.A_{1}=\right]-\infty, 0\left[\right.$ and the maps $\left\{\xi_{1,1}(x)=y_{1}(x)=-\sqrt{-x}+1<\xi_{1,2}(x)=y_{2}(x)=\sqrt{-x}+1\right\}$;
- the singleton $A_{2}=\{0\}$ and the maps $\left\{\xi_{2,1}(0)=y_{1}(0)=-1<\xi_{2,2}(0)=y_{2}(0)=1\right\}$;
- the interval $\left.A_{3}=\right] 0, \infty\left[\right.$ and the maps $\left\{\xi_{3,1}(x)=y_{1}(x)=-\sqrt{x}-1<\xi_{3,2}(x)=y_{2}(x)=\sqrt{x}-1\right\}$.

2. Let $d \in \mathbb{N}$. Consider the following semi-algebraic homeomorphisms:

$$
\bullet F: \begin{array}{ccc}
R^{d} & \rightarrow &] 0,1\left[^{d}\right. \\
& \left(x_{1}, \ldots, x_{d}\right) & \mapsto
\end{array}\left(f\left(x_{1}\right), \ldots, f\left(x_{d}\right)\right)
$$

where

$$
\begin{array}{rcc}
f: & R & \rightarrow \\
& x & \mapsto \frac{x+\sqrt{1+x^{2}}}{2 \sqrt{1+x^{2}}}
\end{array}
$$

$$
\bullet G: \quad] 0,1\left[^{d} \quad \rightarrow \quad\right] 0,+\infty\left[^{d}\right.
$$

$$
\left(x_{1}, \ldots, x_{d}\right) \quad \mapsto \quad\left(g\left(x_{1}\right), \ldots, g\left(x_{d}\right)\right)
$$

where

$$
\left.\begin{array}{rl}
g: \quad] 0,1[& \rightarrow \\
& \\
x & \mapsto 0,+\infty[\\
\bullet H: \quad & \mapsto \\
& R^{d} \\
& \rightarrow \\
\left(x_{1}, \ldots, x_{d}\right) & \mapsto
\end{array}\right)\left(\frac{1}{1+\|\underline{x}\|} x_{1}, \ldots, \frac{1}{1+\|\underline{x}\|} x_{d}\right) .
$$

where

$$
\|\underline{x}\|=\left\|\left(x_{1}, \ldots, x_{d}\right)\right\|=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}} .
$$

3. Let $A \subset R^{n}$ be semi-algebraic.:
(a) for any $\underline{x} \in R^{n}$, the set $\{\|\underline{x}-y\| \mid y \in A\}$ is the image of A by the semi-algebraic function $y \mapsto\|\underline{x}-y\|$. So it is semi-algebraic in R, which implies that it is a finite union of points and open intervals of R. Moreover it is bounded from below by 0 . So the infimum is well-defined in R.
(b) The graph of the function dist is

$$
\begin{gathered}
\Gamma(\text { dist })=\left\{(\underline{x}, t) \in R^{n+1} \mid(t \geq 0) \text { and }\left(\forall \underline{y} \in A, t^{2} \leq\|\underline{x}-\underline{y}\|^{2}\right) \text { and }(\forall \epsilon \in R, \epsilon>\right. \\
\left.\left.0 \Rightarrow \exists \underline{y} \in A, t^{2}+\epsilon>\|\underline{x}-\underline{y}\|^{2}\right)\right\},
\end{gathered}
$$

which is semi-algebraic. Moreover the function dist is continuous as composition of continuous functions. It clearly vanishes on $\operatorname{Clos}(A)$ and is positive elsewhere.
4. Let $n \in \mathbb{N}, S_{n}(\underline{0}, 1):=\left\{\underline{x} \in R^{n+1} \mid\|\underline{x}\|=1\right\}$ be the n-hypersphere, and $\infty:=$ $(1,0, \ldots, 0)$ its north pole. Show that:
(a) the stereographic projection is the following application

$$
\begin{array}{rlrc}
p: \quad S_{n}(0,1) \backslash\{\infty\} & \rightarrow & R^{n} \\
\left(x_{0}, \ldots, x_{n}\right) & \mapsto & \left(\frac{2}{2-x_{0}} x_{1}, \ldots, \frac{2}{2-x_{0}} x_{n}\right)
\end{array}
$$

which is clearly a semi-algebraic homeomorphism;
(b) A subset of $S \subset R^{n}$ is unbounded if and only if it contains a sequence of points $\left(\underline{\tilde{x}}^{(k)}=\left(\tilde{x}_{1}^{(k)}, \ldots, \tilde{x}_{n}^{(k)}\right)_{k \in \mathbb{N}}\right.$ with at least one component $\tilde{x}_{i}^{(k)}$ which tend to ∞ as k tends to infinity. Use the inverse of the preceding homeomorphism to show that this correspond to a sequence of points $\underline{x}^{(k)}=p^{-1}\left(\underline{\tilde{x}}^{(k)}\right)$ which tends to the north pole ∞.

