Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de



## Übungen zur Vorlesung Reelle algebraische Geometrie

**Blatt 10 - Solution** 

**Theorem 0.1 (Cell Decomposition = Zell Zerlegung)** Let R be a real closed field. Any semi-algebraic subset  $A \subset R^n$  is the disjoint union of a finite number of semialgebraic sets, each of them semi-algebraically homeomorphic to an open hypercube  $[0,1[^d \subset R^d, \text{ for some } d \in \mathbb{N} \text{ (with } ]0,1[^0 \text{ being a point)}.$ 

- 1. This exercise concerns the proof of this **Cell Decomposition Theorem**, which is done by induction on  $n \in \mathbb{N}$ . Concerning the induction step, one considers a semi-algebraic subset  $A \subset \mathbb{R}^{n+1}$  and the polynomials  $f_1(\underline{X}, Y), \ldots, f_s(\underline{X}, Y)$  of  $R[\underline{X}, Y]$  which define A. The proof is done showing that there exists a **slicing**  $(A_i, \{\xi_{i,j}, j = 1, \ldots, l_i\})_{i=1,\ldots,m}$  of the family  $f_1(\underline{X}, Y), \ldots, f_s(\underline{X}, Y)$  with respect to the variable Y. Our purpose here is to clarify:
  - the role in this proof of adding the derivatives with respect to *Y* to the family  $f_1(\underline{X}, Y), \ldots, f_s(\underline{X}, Y);$
  - how we can remove the roots  $\xi_{i,j}(\underline{X})$  coming from these new polynomials and obtain the right slicing for the initial family.

Consider the following two-variables polynomial

 $f(X,Y) = (X + (Y - 1)^2)^2 (X - (Y + 1)^2)^2$ 

of R[X,Y] and the corresponding semi-algebraic subset of  $R^2$ 

 $A := \{ (x,y) \in R^2 \mid f(x,y) = 0 \}.$ 

(a)

- If x > 0, the two roots of f(x, Y) are

$$y_1(x) = -\sqrt{x} + 1$$
 and  $y_2(x) = \sqrt{x} + 1$ .

- If x = 0, the two roots of f(x, Y) are

y

$$y_1(0) = -1$$
 and  $y_2(x) = 1$ .

- If x < 0, the two roots of f(x, Y) are

$$y_1(x) = -\sqrt{-x} - 1$$
 and  $y_2(x) = \sqrt{-x} - 1$ .

Note that for any *x*, we have  $y_1(x) < y_2(x)$ , and for any  $x, y \in R$ ,  $f(x,y) \ge 0$ . So, for any  $x \in R$ , the sign matrix of f(x,y) is

$$y = I_0 y_1(x) I_1 y_2(x) I_2$$
  
Sign<sub>R</sub>(f(x,y)) =  $\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ .

Since the sign matrix is constant with respect to *x*, we may *a priori* have a slicing  $(A_1 = R, \{\xi_1(x) < \xi_2(x)\})$  of *f* where  $\xi_j(x) := y_j(x)$  for j = 1, 2.

(b) The picture of  $A := \{(x,y) \in R^2 | f(x,y) = 0\}$  is



The functions  $y_1$  and  $y_2$  are discontinuous at 0. So  $(R, \{\xi_1(x) < \xi_2(x)\})$  with  $\xi_j(x) := y_j(x)$  for j = 1, 2 is not a slicing of f.

The semi-algebraic subset

$$\tilde{A} := \{ (x,y) \in R^2 \mid f(x,y) = 0 = f'(x,y) \}$$

of  $R^2$  can be represented as



(c) The derivative with respect to Y of f(X,Y) is

 $f'(X,Y) = -8(X + (Y - 1)^2)(X - (Y + 1)^2)(Y^3 - Y + X).$ For any  $x \in R$ , the discriminant of the cubic polynomial  $Y^3 - Y + x$  is  $\Delta := x^2 - \frac{4}{27}1^3$ . We have 3 cases: - if  $\Delta < 0 \Leftrightarrow -\sqrt{\frac{4}{27}} < x < \sqrt{\frac{4}{27}}$ , the cubic polynomial  $Y^3 - Y + x$  has 3 roots  $y_3(x) < y_4(x) < y_5(x)$  and 2 sign changes. - if  $\Delta = 0 \Leftrightarrow x = \pm \sqrt{\frac{4}{27}}$ , the cubic polynomial  $Y^3 - Y + x$  has 2 roots  $y_3(x) < y_4(x)$  and 1 sign change. For  $x = -\sqrt{\frac{4}{27}}$ , the sign change is at  $y_1(x)$ , and for  $x = \sqrt{\frac{4}{27}}$ , the sign change is at  $y_2(x)$ - if  $\Delta > 0 \Leftrightarrow x < -\sqrt{\frac{4}{27}}$  or  $x > \sqrt{\frac{4}{27}}$ , the cubic polynomial  $Y^3 - Y + x$  has 2 roots  $y_3(x) < y_4(x)$  and no sign change. It is > 0 whenever  $x < -\sqrt{\frac{4}{27}}$  and < 0 whenever  $x > \sqrt{\frac{4}{27}}$ .

We obtain the following cases:

- if 
$$x < -\sqrt{\frac{4}{27}}$$
, then  $y_1(x) = -\sqrt{-x} + 1 < y_3(x) < y_2(x) = \sqrt{-x} + 1$  and we

have

(d) The slicing of  $\tilde{A}$  is:

- the interval 
$$\tilde{A}_1 = \left[ -\infty, -\sqrt{\frac{4}{27}} \right]$$
 and the maps  $\{\tilde{\xi}_{1,1}(x) = y_1(x) = -\sqrt{-x} + 1 < \tilde{\xi}_{1,2}(x) = y_3(x) < \tilde{\xi}_{1,3}(x) = y_2(x) = \sqrt{-x} + 1\};$   
- the singleton  $\tilde{A}_2 = \left\{ -\sqrt{\frac{4}{27}} \right\}$  and the maps  $\{\tilde{\xi}_{2,1}(x) = y_3(x) = \frac{-1}{\sqrt{3}} < 1$ 

\_

$$\begin{split} \tilde{\xi}_{2,2}(x) &= y_1(x) = -\sqrt{\frac{2}{3\sqrt{3}}} + 1 < \tilde{\xi}_{2,3}(x) = y_4(x) = \frac{2}{\sqrt{3}} < \tilde{\xi}_{2,4}(x) = y_2(x) = \\ \sqrt{\frac{2}{3\sqrt{3}}} + 1 \}; \end{split}$$

- the interval  $\tilde{A}_3 = \left[ -\sqrt{\frac{4}{27}}, 0 \right]$  and the maps  $\{\tilde{\xi}_{3,1}(x) = y_3(x) < \tilde{\xi}_{3,2}(x) = y_4(x) < \tilde{\xi}_{3,3}(x) = y_1(x) = -\sqrt{-x} + 1 < \tilde{\xi}_{3,4}(x) = y_5(x) < \tilde{\xi}_{3,5}(x) = y_2(x) = \sqrt{-x} + 1\};$
- the singleton  $\tilde{A}_4 = \{0\}$  and the maps  $\{\tilde{\xi}_{4,1}(0) = y_1(0) = y_3(0) = -1 < \tilde{\xi}_{4,2}(x) = y_4(0) = 0 < \tilde{\xi}_{4,3}(0) = y_2(x) = y_5(0) = 1\};$
- the interval  $\tilde{A}_5 = \left[0, \sqrt{\frac{4}{27}}\right]$  and the maps  $\{\tilde{\xi}_{5,1}(x) = y_1(x) = -\sqrt{x} 1 < \tilde{\xi}_{5,2}(x) = y_3(x) < \tilde{\xi}_{5,3}(x) = y_2(x) = \sqrt{x} 1 < \tilde{\xi}_{5,4}(x) = y_4(x) < \tilde{\xi}_{5,5}(x) = y_5(x)\};$
- the singleton  $\tilde{A}_6 = \left\{ \sqrt{\frac{4}{27}} \right\}$  and the maps  $\{\tilde{\xi}_{6,1}(x) = y_1(x) = -\sqrt{\frac{2}{3\sqrt{3}}} 1 < \tilde{\xi}_{6,2}(x) = y_3(x) = \frac{-2}{\sqrt{3}} < \tilde{\xi}_{6,3}(x) = y_2(x) = \sqrt{\frac{2}{3\sqrt{3}}} 1 < \tilde{\xi}_{6,4}(x) = y_4(x) = \frac{1}{\sqrt{3}} \};$

- the interval 
$$\tilde{A}_7 = \left[ \sqrt{\frac{4}{27}}, \infty \right]$$
 and the maps  $\{\tilde{\xi}_{7,1}(x) = y_1(x) = -\sqrt{x} - 1 < \tilde{\xi}_{7,2}(x) = y_3(x) < \tilde{\xi}_{7,3}(x) = y_2(x) = \sqrt{x} - 1 \}.$ 

(e) Note that, for each  $A_i$ , we have either  $\Gamma(\xi_{i,j}) \subset A$  or  $\Gamma(\xi_{i,j}) \cap A = \emptyset$ . We can only remove the  $\xi_{i,j}$ 's coming *properly* from f'(x,y), i.e. the parts for which A and  $\tilde{A}$  do not coincide. Thus we can remove the functions  $\xi_{1,2}, \xi_{2,1}, \xi_{2,3}, \xi_{3,1}, \xi_{3,2}, \xi_{3,4}, \xi_{4,2}, \xi_{5,2}, \xi_{5,4}, \xi_{5,5}, \xi_{6,2}, \xi_{6,4}, \xi_{7,2}$ , which correspond to the following curve  $\{(x,y) \in R^2 \mid y^3 - y + x = 0\}$  minus the 2 indicated points for x = 0:



- (f) The slicing of *A* is given by:
  - the interval  $A_1 = ]-\infty, 0[$  and the maps  $\{\xi_{1,1}(x) = y_1(x) = -\sqrt{-x} + 1 < \xi_{1,2}(x) = y_2(x) = \sqrt{-x} + 1\};$

  - the singleton  $A_2 = \{0\}$  and the maps  $\{\xi_{2,1}(0) = y_1(0) = -1 < \xi_{2,2}(0) = y_2(0) = 1\};$  the interval  $A_3 = ]0,\infty[$  and the maps  $\{\xi_{3,1}(x) = y_1(x) = -\sqrt{x} 1 < \xi_{3,2}(x) = y_2(x) = \sqrt{x} 1\}.$
- 2. Let  $d \in \mathbb{N}$ . Consider the following semi-algebraic homeomorphisms:

•F :  $R^d$  $]0,1[^{d}]$  $\rightarrow$  $(x_1,\ldots,x_d) \mapsto (f(x_1),\ldots,f(x_d))$ 

where

$$f: R \longrightarrow ]0,1[$$

$$x \mapsto \frac{x + \sqrt{1 + x^2}}{2\sqrt{1 + x^2}}.$$

$$\bullet G: ]0,1[^d \longrightarrow ]0, + \infty[^d$$

$$(x_1, \dots, x_d) \mapsto (g(x_1), \dots, g(x_d))$$

where

$$g: \quad ]0,1[ \rightarrow ]0, +\infty[$$

$$x \mapsto \frac{x}{1-x}.$$

$$\bullet H: \quad R^d \rightarrow B_d(\underline{0},1)$$

$$(x_1,\ldots,x_d) \mapsto (\frac{1}{1+||\underline{x}||}x_1,\ldots,\frac{1}{1+||\underline{x}||}x_d)$$

where

$$\|\underline{x}\| = \|(x_1, \dots, x_d)\| = \sqrt{x_1^2 + \dots + x_d^2}.$$

3. Let  $A \subset \mathbb{R}^n$  be semi-algebraic.:

(a) for any  $\underline{x} \in \mathbb{R}^n$ , the set  $\{||\underline{x} - \underline{y}|| | \underline{y} \in A\}$  is the image of A by the semi-algebraic function  $\underline{y} \mapsto ||\underline{x} - \underline{y}||$ . So it is semi-algebraic in R, which implies that it is a finite union of points and open intervals of R. Moreover it is bounded from below by 0. So the infimum is well-defined in R.

(b) The graph of the function *dist* is

p

$$\begin{split} \Gamma(dist) &= \{(\underline{x},t) \in R^{n+1} \mid (t \geq 0) \text{ and } (\forall y \in A, \, t^2 \leq ||\underline{x} - y||^2) \text{ and } (\forall \epsilon \in R, \, \epsilon > 0 \Rightarrow \exists y \in A, \, t^2 + \epsilon > ||\underline{x} - y||^2) \}, \end{split}$$

which is semi-algebraic. Moreover the function dist is continuous as composition of continuous functions. It clearly vanishes on Clos(A) and is positive elsewhere.

4. Let  $n \in \mathbb{N}$ ,  $S_n(\underline{0},1) := \{\underline{x} \in \mathbb{R}^{n+1} \mid ||\underline{x}|| = 1\}$  be the *n*-hypersphere, and  $\infty := (1,0,\ldots,0)$  its north pole. Show that:

(a) the stereographic projection is the following application

$$: S_n(\underline{0},1) \setminus \{\infty\} \rightarrow R^n$$
  
$$(x_0,\ldots,x_n) \mapsto (\frac{2}{2-x_0}x_1,\ldots,\frac{2}{2-x_0}x_n)$$

which is clearly a semi-algebraic homeomorphism;

(b) A subset of  $S \subset \mathbb{R}^n$  is unbounded if and only if it contains a sequence of points  $(\underline{\tilde{x}}^{(k)} = (\tilde{x}_1^{(k)}, \dots, \tilde{x}_n^{(k)})_{k \in \mathbb{N}}$  with at least one component  $\tilde{x}_i^{(k)}$  which tend to  $\infty$  as *k* tends to infinity. Use the inverse of the preceding homeomorphism to show that this correspond to a sequence of points  $\underline{x}^{(k)} = p^{-1}(\underline{\tilde{x}}^{(k)})$  which tends to the north pole  $\infty$ .