Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de
Übungen zur Vorlesung Reelle algebraische Geometrie
Blatt 10

These exercises will be collected Tuesday 12 January in the mailbox number 15 of the Mathematics department.

Theorem 0.1 (Cell Decomposition = Zell Zerlegung) Let R be a real closed field . Any semi-algebraic subset $A \subset R^{n}$ is the disjoint union of a finite number of semialgebraic sets, each of them semi-algebraically homeomorphic to an open hypercube $] 0,1\left[{ }^{d} \subset R^{d}\right.$, for some $d \in \mathbb{N}$ (with $] 0,1\left[{ }^{0}\right.$ being a point).

1. This exercise concerns the proof of this Cell Decomposition Theorem, which is done by induction on $n \in \mathbb{N}$. Concerning the induction step, one considers a semi-algebraic subset $A \subset R^{n+1}$ and the polynomials $f_{1}(\underline{X}, Y), \ldots, f_{s}(\underline{X}, Y)$ of $R[\underline{X}, Y]$ which define A. The proof is done showing that there exists a slicing $\left(A_{i},\left\{\xi_{i, j}, j=1, \ldots, l_{i}\right\}\right)_{i=1, \ldots, m}$ of the family $f_{1}(\underline{X}, Y), \ldots, f_{s}(\underline{X}, Y)$ with respect to the variable Y. Our purpose here is to clarify:

- the role in this proof of adding the derivatives with respect to Y to the family $f_{1}(\underline{X}, Y), \ldots, f_{s}(\underline{X}, Y)$;
- how we can remove the roots $\xi_{i, j}(\underline{X})$ coming from these new polynomials and obtain the right slicing for the initial family.

Consider the following two-variables polynomial

$$
f(X, Y)=\left(X+(Y-1)^{2}\right)^{2}\left(X-(Y+1)^{2}\right)^{2}
$$

of $R[X, Y]$ and the corresponding semi-algebraic subset of R^{2}

$$
A:=\left\{(x, y) \in R^{2} \mid f(x, y)=0\right\}
$$

(a) For any $x \in R$, give the two roots of $f(x, Y)$ and deduce its sign matrix with respect to x.
(b) Draw $A \subset R^{2}$ and deduce that we cannot find two continuous semi-algebraic functions $\xi_{1}(x)<\xi_{2}(x): R \rightarrow R$ so that we have a slicing $\left(A_{1}=R,\left\{\xi_{1}(x)<\right.\right.$ $\left.\left.\xi_{2}(x)\right\}\right)$ of A.

The semi-algebraic subset

$$
\tilde{A}:=\left\{(x, y) \in R^{2} \mid f(x, y)=0=f^{\prime}(x, y)\right\}
$$

of R^{2} can be represented as

(c) Compute $f^{\prime}(X, Y)$ the derivative with respect to Y of $f(X, Y)$ and compute the sign matrices $\operatorname{Sign}_{R}\left(f(x, Y), f^{\prime}(x, Y)\right)$ with respect to $x \in R$.
(Hint: recall that the cubic polynomial $y^{3}-y+x$ has 1,2 or 3 roots, whenever its discriminant $\Delta:=x^{2}-\frac{4}{27}$ is $>0,=0,<0$ respectively, and use the preceding picture to order all the roots.)
(d) Deduce the slicing $\left.\left(\tilde{A}_{i}, \tilde{\xi}_{i, j}, j=1, \ldots, l_{i}\right\}\right)_{i=1, \ldots, m}$ of \tilde{A}.
(e) Show that we can only remove from the precedingly computed slicing, the $\tilde{\xi}_{i, j}$'s such that the union of their graphs $\bigcup_{i, j} \Gamma\left(\tilde{\xi}_{i, j}\right)$ is the following curve $\{(x, y) \in$ $\left.R^{2} \mid y^{3}-y+x=0\right\}$ minus the 2 points indicated for $x=0$:

(f) Conclude that the slicing of f is given by $\left(A_{i},\left\{\xi_{i, 1}<\xi_{i, 2}\right\}\right)_{i=1,2,3}$ with $A_{1}=$ $]-\infty, 0\left[, A_{2}=\{0\}\right.$ and $\left.A_{3}=\right] 0, \infty\left[\right.$. Give the formulas for the $\xi_{i, j}$'s.
2. Let $d \in \mathbb{N}$. Show that the semi-algebraic sets

$$
\left.R^{d},\right] 0, \infty\left[{ }^{d},\right] 0,1\left[{ }^{d} \text { and } B_{d}(\underline{0}, 1):=\left\{\underline{x} \in R^{d} \mid\|\underline{x}\|<1\right\}\right.
$$

are pairwise semi-algebraically homeomorph. Such semi-algebraic sets are called cells (Zell)
3. Let $A \subset R^{n}$ be semi-algebraic. Show that:
(a) for any $\underline{x} \in R^{n}$, the expression $\operatorname{dist}(\underline{x}, A):=\inf \{\|\underline{x}-\underline{y}\| \mid \underline{y} \in A\}$ is well defined;
(b) the map

$$
\begin{array}{lccc}
\operatorname{dist}: & R^{n} & \rightarrow & R \\
\underline{x} & \mapsto & \operatorname{dist}(\underline{x}, A)
\end{array}
$$

is semi-algebraic, continuous, vanishes on $\operatorname{Cos}(A)$ and is positive elsewhere.
4. Let $n \in \mathbb{N}, S_{n}(\underline{0}, 1):=\left\{\underline{x} \in R^{n+1} \mid\|\underline{x}\|=1\right\}$ be the n-hypersphere, and $\infty:=$ $(1,0, \ldots, 0)$ its north pole. Show that:
(a) the stereographic projection $p: S_{n}(\underline{0}, 1) \backslash\{\infty\} \rightarrow R^{n}$ is a semi-algebraic homeomorphism;
(b) a subset of $S \subset R^{n}$ is unbounded if and only if the closure of p^{-1} contains ∞.

