Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 10

These exercises will be collected Tuesday 12 January in the mailbox number 15 of the Mathematics department.

Theorem 0.1 (Cell Decomposition = Zell Zerlegung) Let R be a real closed field. Any semi-algebraic subset $A \subset R^n$ is the disjoint union of a finite number of semialgebraic sets, each of them semi-algebraically homeomorphic to an open hypercube $]0,1[^d \subset R^d$, for some $d \in \mathbb{N}$ (with $]0,1[^0$ being a point).

- 1. This exercise concerns the proof of this **Cell Decomposition Theorem**, which is done by induction on $n \in \mathbb{N}$. Concerning the induction step, one considers a semi-algebraic subset $A \subset \mathbb{R}^{n+1}$ and the polynomials $f_1(\underline{X}, Y), \ldots, f_s(\underline{X}, Y)$ of $R[\underline{X}, Y]$ which define A. The proof is done showing that there exists a **slicing** $(A_i, \{\xi_{i,j}, j = 1, \ldots, l_i\})_{i=1,\ldots,m}$ of the family $f_1(\underline{X}, Y), \ldots, f_s(\underline{X}, Y)$ with respect to the variable Y. Our purpose here is to clarify:
 - the role in this proof of adding the derivatives with respect to *Y* to the family $f_1(\underline{X}, \underline{Y}), \ldots, f_s(\underline{X}, \underline{Y});$
 - how we can remove the roots $\xi_{i,j}(\underline{X})$ coming from these new polynomials and obtain the right slicing for the initial family.

Consider the following two-variables polynomial

$$f(X,Y) = (X + (Y - 1)^2)^2 (X - (Y + 1)^2)^2$$

of R[X,Y] and the corresponding semi-algebraic subset of R^2

$$A := \{ (x, y) \in R^2 \mid f(x, y) = 0 \}.$$

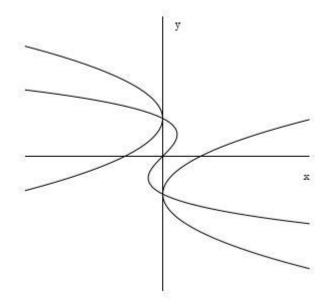
(a) For any $x \in R$, give the two roots of f(x,Y) and deduce its sign matrix with respect to x.

(b) Draw $A \subset R^2$ and deduce that we cannot find two *continuous* semi-algebraic functions $\xi_1(x) < \xi_2(x)$: $R \to R$ so that we have a slicing $(A_1 = R, \{\xi_1(x) < \xi_2(x)\})$ of A.

The semi-algebraic subset

$$\tilde{A} := \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0 = f'(x,y)\}$$

of R^2 can be represented as

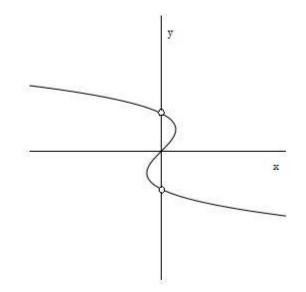


(c) Compute f'(X,Y) the derivative with respect to Y of f(X,Y) and compute the

(c) compare f'(x, r) for derivative with respect to r of f'(x, r) and compare the sign matrices $\operatorname{Sign}_{R}(f(x, Y), f'(x, Y))$ with respect to $x \in R$. (Hint: recall that the cubic polynomial $y^{3} - y + x$ has 1, 2 or 3 roots, whenever its discriminant $\Delta := x^{2} - \frac{4}{27}$ is > 0, = 0, < 0 respectively, and use the preceding picture to order all the roots.)

(d) Deduce the slicing $(\tilde{A}_i, \{\tilde{\xi}_{i,j}, j = 1, ..., l_i\})_{i=1,...,m}$ of \tilde{A} .

(e) Show that we can only remove from the precedingly computed slicing, the $\tilde{\xi}_{i,j}$'s such that the union of their graphs $\bigcup_{i,j} \Gamma(\tilde{\xi}_{i,j})$ is the following curve $\{(x,y) \in \mathbb{R}^2 \mid y^3 - y + x = 0\}$ minus the 2 points indicated for x = 0:



(f) Conclude that the slicing of f is given by $(A_i, \{\xi_{i,1} < \xi_{i,2}\})_{i=1,2,3}$ with $A_1 =] - \infty, 0[, A_2 = \{0\}$ and $A_3 =]0, \infty[$. Give the formulas for the $\xi_{i,j}$'s.

2. Let $d \in \mathbb{N}$. Show that the semi-algebraic sets

 R^{d} , $]0,\infty[^{d}$, $]0,1[^{d}$ and $B_{d}(\underline{0},1) := \{ \underline{x} \in R^{d} \mid ||\underline{x}|| < 1 \}$

are pairwise **semi-algebraically homeomorph**. Such semi-algebraic sets are called **cells** (**Zell**)

3. Let $A \subset \mathbb{R}^n$ be semi-algebraic. Show that:

(a) for any $\underline{x} \in \mathbb{R}^n$, the expression dist(\underline{x} ,A) := inf{ $||\underline{x} - y|| | y \in A$ } is well defined;

(b) the map

dist:
$$R^n \to R$$

 $\underline{x} \mapsto \text{dist}(\underline{x},A)$

is semi-algebraic, continuous, vanishes on Clos(A) and is positive elsewhere.

4. Let $n \in \mathbb{N}$, $S_n(\underline{0},1) := \{\underline{x} \in \mathbb{R}^{n+1} \mid ||\underline{x}|| = 1\}$ be the *n*-hypersphere, and $\infty := (1,0,\ldots,0)$ its north pole. Show that:

(a) the **stereographic projection** $p : S_n(\underline{0},1) \setminus \{\infty\} \to \mathbb{R}^n$ is a semi-algebraic homeomorphism;

(b) a subset of $S \subset \mathbb{R}^n$ is unbounded if and only if the closure of p^{-1} contains ∞ .