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Theorem 0.1 (Curve Selection Lemma) Let R be a real closed field. Let A be a semi-
algebraic subset of Rn and x ∈ Rn a point belonging to A, the closure of A. Then there
exists a continuous semi-algebraic map

f : [0,1]→ Rn

such that f (0) = x and f (]0,1]) ⊂ A.

Definition 0.2 A polynomial f (X,Y) ∈ R[X,Y] is said to be quasi-monic with respect
to Y if

f (X,Y) = adYd + gd−1(X)Yd−1 + · · · + g0(X),
where ad is a nonzero element of R.

The Curve Selection Lemma is proved together with the following lemma:
Lemma 0.3 Denote X = (X1, . . . ,Xn). Let f1, . . . , fs be a family of polynomials in
R[X,Y]. Suppose that the family is stable under derivation with respect to Y and that all
fk are quasi-monic with respect to Y. Let (Ai,(ξi, j) j=1,...,li )i=1,...,m be a slicing of f1, . . . , fs.
Then every function ξi, j can be continuously extended to Ai.

1. This exercise deals with two claims used in the case (iii) of the proof of the
Curve Selection Lemma and the Lemma 0.3. Namely, the case (iii) is the one
where we suppose that the Curve Selection Lemma and the Lemma 0.3 hold for
some n ∈ N, and where we prove that the Curve Selection Lemma holds for n+1.
Therefore, we consider a point (x,y) ∈ A in the closure of some semi-algebraic
subset A ⊂ Rn+1. Let f1, . . . , fs ∈ R[X,Y] be a family of non trivial polynomials
defining A (as a boolean combination of equations and inequalities).

(a) (i) Consider
f (X,Y) = gm(X)Ym + · · · + g0(X)

and a = (a1, . . . ,an) ∈ Rn. Denote for any k = 1, . . . ,m,

gk(X) =
∑

0≤|I|≤dk

ck,I XI
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with I = (i1, . . . ,in) ∈ Nn, |I| = i1 + · · · + in, XI = Xi1
1 , . . . ,X

in
n , and dk is the total

degree of gk.
Performing the following linear change of coordinates

X = X̃ + aY
we obtain for any k = 1, . . . ,m

gk(X) = g̃(X̃,Y)
=

∑
0≤|I|≤dk

ck,I(X̃ + aY)I

= (
∑
|I|=dk

ck,IaI)Ydk + · · · + gk(X̃)

The leading coefficient
∑
|I|=dk

ck,IaI is a non trivial homogenous polynomial of de-

gree dk in the ai’s: : we can choose them so that it is non zero (take a in the
complement in Rn of the algebraic set defined by this polynomial).

Now, denote d := max{k + dk; k = 1, . . . ,m}. We obtain:
f (X,Y) = f̃ (X̃,Y)

=

m∑
k=0

g̃k(X,Y)Yk

=

m∑
k=0

[(
∑
|I|=dk

ck,IaI)Yk+dk + · · · + gk(X̃)Yk]

= [
∑

k+dk=d

(
∑
|I|=dk

ck,IaI)]Yd + · · · (terms with degree less than d in Y)

The leading coefficient is a sum over k such that k+dk = d, of non trivial homoge-
nous polynomials in the ai’s of degree dk. So it is itself a non trivial polynomial.
Thus we can choose the ai’s so that it is non zero (as before, consider a in the
complement in Rn of the algebraic set defined by this polynomial).

(ii) It suffices to note that the derivative with respect to Y of a quasi-monic poly-
nomial is itself quasi-monic.

(b) Now we are concerned with the very last part of the proof of (iii). We consi-
der a slicing (Ai,(ξi, j) j=1,...,li )i=1,...,m of f1, . . . , fs. During the lecture, we delt with
the case where the point (x,y) is in the closure of a slice ]ξi, j,ξi, j+1[⊂ A, with
j = 1, . . . ,li − 1. By Lemma 0.3 for n, we noted that ξi, j and ξi, j+1 can be ex-
tended continuously to x. Now applying the CSL for n, there exists a curve
φ : [0,1] → Rn such that phi(0) = x and φ(]0,1]) ⊂ Ai. There was a subcase
that we did not prove during the lecture: the one where (x,y) ∈ Cl(Γ(ξi, j)) or
(x,y) ∈ Cl(Γ(ξi, j+1)) (these graphs are included in the closure of Ai, but may not
be included in A).

(i) Consider the map
f = (φ,ψ) : [0,1]→ Rn+1 = Rn × R
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where

∀t ∈ [0,1], ψ(t) := c[
t
2

(ξi, j ◦ φ)(t) + (1 −
t
2

)(ξi, j+1 ◦ φ)(t)]

+(1 − c)[(1 −
t
2

)(ξi, j ◦ φ)(t) +
t
2

(ξi, j+1 ◦ φ)(t)]

and k =

∣∣∣∣∣∣∣∣∣∣
1
2

if ξi, j(x) = ξi, j+1(x) = y
y − ξi, j(x)

ξi, j+1(x) − ξi, j(x)
if ξi, j(x) < ξi, j+1(x).

It suffices to check that f (0) := (φ(0),ψ(0)) = (x,y) and that f (t) := (φ(t),ψ(t)) ∈
]ξi, j,ξi, j+1[) for all t ∈]0,1].

(ii) Suppose now that the point (x,y) is in the closure of a slice ]ξi, j,ξi, j+1[⊂ A,
where either j = 0 which means that the slice is ]−∞,ξi,1[, or j = li which means
that the slice is ]ξi,li , +∞[.
Consider for instance the case j = 0, i.e. (x,y) ∈ Cl(]−∞,ξi,1[) with ]−∞,ξi,1[⊂ A.
By Lemma 0.3 for n, note that ξi,1 can be extended continuously to x. We put
ξ̃i,0 := ξi,1 − d where for example d := 1 + (ξi,1(x)− y). Then (x,y) ∈ Cl(]ξ̃i,0,ξi,1[)
and ]ξ̃i,0,ξi,1[⊂ A. Now, we can use the preceding result. Namely, we define

f = (φ,ψ) : [0,1]→ Rn+1 = Rn × R
where

∀t ∈ [0,1], ψ(t) := c[
t
2

(ξ̃i,0 ◦ φ)(t) + (1 −
t
2

)(ξi,1 ◦ φ)(t)]

+(1 − c)[(1 −
t
2

)(ξ̃i,0 ◦ φ)(t) +
t
2

(ξi,1 ◦ φ)(t)]

and c =

∣∣∣∣∣∣∣∣∣∣∣
1
2

if ξ̃i,0(x) = ξi,1(x) = y

y − ξ̃i,0(x)

ξi,1(x) − ξ̃i,0(x)
if ξ̃i,0(x) < ξi,1(x).

We obtain:

ψ(t) = (ξi,1 ◦ φ)(t) + (
1
2
− c)dt − d(1 − c).

The case for which j = li is similar.

2. (a) Let A ⊂ Rn be a semi-algebraic set and f : A → Rm be a semi-algebraic
map. For any k = 1, . . . ,m, denote by πk : Rm → R the projection onto the kth

component of Rm, and fk the semialgebraic map fk := πk ◦ f : A → R. The map
f is continuous at some x ∈ A if and only if fk is continuous at x for k = 1, . . . ,m.
For any k = 1, . . . ,m, consider the graph Γ( fk) := {(x,y) ∈ A × R | y = fk(x)}
which is semialgebraic, and a slicing of it (A(k)

i ,{ξ(k)
i, j , j = 1, . . . ,lk,i})i=1,...,nk . From

the Theorem of Cellular Decomposition, Γ( fk) is the finite union of Γ(ξ(k)
i, j ) and

slices ]ξ(k)
i, j ,ξ

(k)
i, j+1[. But since Γ( fk) is a graph, it has empty interior. So it is only

a finite union of graphs of ξ(k)
i, j ’s. More precisely, for each i = 1, . . . ,nk, we have

fk(x) = ξ(k)
i, j (x) for all x ∈ A(k)

i , for some fixed j = 1, . . . ,lk,i. Now, we notice that

fk is continuous on each A(k)
i since the corresponding ξ(k)

i, j is so.
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To conclude it suffices to consider the decomposition (Ai)i of A which is the in-
tersection of all the decompositions (A(k)

i )i=1,...,nk : f is then continuous on each of
the Ai’s.

(b) From the preceding result, there exists a semi-algebraic decomposition I =

I1
⋃
· · ·

⋃
Im such that f|Ik is continuous. Then, notice that semi-algebraic subsets

of R are finite unions of intervals and points.
3. Consider a semi-algebraic subset A ⊂ Rn, and an element x ∈ A. Consider a

semi-algebraic neighbourhood U of x in A. Let U0 be the semi-algebraic connec-
ted component of U which contains x. Then U0 is open in U and is a semi-
algebraically connected neighbourhood of x in U.

4. For x ∈ Rn, let Ax := {t ∈ R | (x,y) ∈ A}. Since Ax is semi-algebraic in R, it is a
finite union of points and intervals. For any x ∈ π(A), Ax is nonempty. We define
f (x) by:

(a) if Ax = R, let f (x) := 0;

(b) if Ax has a least element t0, let f (x) := t0;

(c) if the leftmost interval of Ax is ]t0,t1[, let f (x) :=
t0 + t1

2
;

(d) if the leftmost interval of Ax is ] −∞,t0[, let f (x) := t0 − 1;

(e) if the leftmost interval of Ax is ]t0, +∞[, let f (x) = t0 + 1.
This exhausts all possibilities. Clearly, f is semi-algebraic and (x, f (x)) ∈ A when
x ∈ π(A).
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