Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 11 - Solution

Theorem 0.1 (Curve Selection Lemma) Let R be a real closed field. Let A be a semialgebraic subset of R^n and $\underline{x} \in R^n$ a point belonging to \overline{A} , the closure of A. Then there exists a continuous semi-algebraic map

$$f:[0,1]\to \mathbb{R}^n$$

such that $f(0) = \underline{x}$ and $f(]0,1]) \subset A$.

Definition 0.2 A polynomial $f(\underline{X}, Y) \in R[\underline{X}, Y]$ is said to be quasi-monic with respect to Y if

$$f(\underline{X},Y) = a_d Y^d + g_{d-1}(\underline{X}) Y^{d-1} + \dots + g_0(\underline{X}),$$

where a_d is a nonzero element of R.

The Curve Selection Lemma is proved together with the following lemma:

Lemma 0.3 Denote $\underline{X} = (X_1, \ldots, X_n)$. Let f_1, \ldots, f_s be a family of polynomials in $R[\underline{X}, Y]$. Suppose that the family is **stable under derivation** with respect to Y and that all f_k are **quasi-monic** with respect to Y. Let $(A_i, (\xi_{i,j})_{j=1,\ldots,l_i})_{i=1,\ldots,m}$ be a slicing of f_1, \ldots, f_s . Then every function $\xi_{i,j}$ can be continuously extended to $\overline{A_i}$.

This exercise deals with two claims used in the case (*iii*) of the proof of the Curve Selection Lemma and the Lemma 0.3. Namely, the case (*iii*) is the one where we suppose that the Curve Selection Lemma and the Lemma 0.3 hold for some n ∈ N, and where we prove that the Curve Selection Lemma holds for n+1. Therefore, we consider a point (<u>x</u>,y) ∈ A in the closure of some semi-algebraic subset A ⊂ Rⁿ⁺¹. Let f₁,...,f_s ∈ R[<u>X</u>,Y] be a family of non trivial polynomials defining A (as a boolean combination of equations and inequalities).

(a) (i) Consider

$$f(\underline{X}, Y) = g_m(\underline{X})Y^m + \dots + g_0(\underline{X})$$

and $\underline{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$. Denote for any $k = 1, \dots, m$,
$$g_k(\underline{X}) = \sum_{0 \le |I| \le d_k} c_{k,I} \underline{X}^I$$

with $I = (i_1, \ldots, i_n) \in \mathbb{N}^n$, $|I| = i_1 + \cdots + i_n$, $\underline{X}^I = X_1^{i_1}, \ldots, X_n^{i_n}$, and d_k is the total degree of g_k .

Performing the following linear change of coordinates

$$\underline{X} = \underline{\tilde{X}} + \underline{a}Y$$

we obtain for any $k = 1, \ldots, m$

$$g_{k}(\underline{X}) = \widetilde{g}(\underline{\widetilde{X}}, Y)$$

$$= \sum_{\substack{0 \le |I| \le d_{k}}}^{0 \le |I| \le d_{k}} c_{k,I}(\underline{\widetilde{X}} + \underline{a}Y)^{I}$$

$$= (\sum_{|I| = d_{k}}^{0 \le |I| \le d_{k}} c_{k,I}\underline{a}^{I})Y^{d_{k}} + \dots + g_{k}(\underline{\widetilde{X}})$$

The leading coefficient $\sum_{|I|=d_k} c_{k,I} \underline{a}^I$ is a non trivial homogenous polynomial of de-

gree d_k in the a_i 's:: we can choose them so that it is non zero (take \underline{a} in the complement in \mathbb{R}^n of the algebraic set defined by this polynomial).

Now, denote $d := \max\{k + d_k; k = 1, \dots, m\}$. We obtain:

$$f(\underline{X},Y) = \tilde{f}(\underline{\tilde{X}},Y)$$

$$= \sum_{k=0}^{m} \tilde{g}_{k}(\underline{X},Y)Y^{k}$$

$$= \sum_{k=0}^{m} [(\sum_{|I|=d_{k}} c_{k,I}\underline{a}^{I})Y^{k+d_{k}} + \dots + g_{k}(\underline{\tilde{X}})Y^{k}]$$

$$= [\sum_{k+d_{k}=d}^{N} (\sum_{|I|=d_{k}} c_{k,I}\underline{a}^{I})]Y^{d} + \dots \text{ (terms with degree less than } d \text{ in } Y)$$

The leading coefficient is a sum over k such that $k+d_k = d$, of non trivial homogenous polynomials in the a_i 's of degree d_k . So it is itself a non trivial polynomial. Thus we can choose the a_i 's so that it is non zero (as before, consider <u>a</u> in the complement in \mathbb{R}^n of the algebraic set defined by this polynomial).

(ii) It suffices to note that the derivative with respect to Y of a quasi-monic polynomial is itself quasi-monic.

(b) Now we are concerned with the very last part of the proof of (*iii*). We consider a slicing $(A_i, (\xi_{i,j})_{j=1,...,l_i})_{i=1,...,m}$ of f_1, \ldots, f_s . During the lecture, we delt with the case where the point (\underline{x}, y) is in the closure of a slice $]\xi_{i,j}, \xi_{i,j+1}[\subset A$, with $j = 1, \ldots, l_i - 1$. By Lemma 0.3 for *n*, we noted that $\xi_{i,j}$ and $\xi_{i,j+1}$ can be extended continuously to \underline{x} . Now applying the CSL for *n*, there exists a curve $\phi : [0,1] \rightarrow \mathbb{R}^n$ such that $phi(0) = \underline{x}$ and $\phi(]0,1]) \subset A_i$. There was a subcase that we did not prove during the lecture: the one where $(\underline{x}, y) \in Cl(\Gamma(\xi_{i,j+1}))$ (these graphs are included in the closure of A_i , but may not be included in A).

(i) Consider the map

$$f = (\phi, \psi) : [0, 1] \to R^{n+1} = R^n \times R$$

where

$$\begin{aligned} \forall t \in [0,1], \psi(t) &:= c[\frac{t}{2}(\xi_{i,j} \circ \phi)(t) + (1 - \frac{t}{2})(\xi_{i,j+1} \circ \phi)(t)] \\ &+ (1 - c)[(1 - \frac{t}{2})(\xi_{i,j} \circ \phi)(t) + \frac{t}{2}(\xi_{i,j+1} \circ \phi)(t)] \\ \text{and} \quad k = \begin{vmatrix} \frac{1}{2} & \text{if } \xi_{i,j}(\underline{x}) = \xi_{i,j+1}(\underline{x}) = y \\ \frac{y - \xi_{i,j}(\underline{x})}{\xi_{i,j+1}(\underline{x}) - \xi_{i,j}(\underline{x})} & \text{if } \xi_{i,j}(\underline{x}) < \xi_{i,j+1}(\underline{x}). \end{vmatrix} \end{aligned}$$

It suffices to check that $f(0) := (\phi(0), \psi(0)) = (\underline{x}, y)$ and that $f(t) := (\phi(t), \psi(t)) \in [\xi_{i,j}, \xi_{i,j+1}[)$ for all $t \in [0,1]$.

(ii) Suppose now that the point (\underline{x}, y) is in the closure of a slice $]\xi_{i,j}, \xi_{i,j+1}[\subset A]$, where either j = 0 which means that the slice is $]-\infty, \xi_{i,1}[$, or $j = l_i$ which means that the slice is $]\xi_{i,l_i}, +\infty[$.

Consider for instance the case j = 0, i.e. $(\underline{x}, y) \in Cl(] - \infty, \xi_{i,1}[)$ with $] - \infty, \xi_{i,1}[\subset A$. By Lemma 0.3 for *n*, note that $\xi_{i,1}$ can be extended continuously to \underline{x} . We put $\tilde{\xi}_{i,0} := \xi_{i,1} - d$ where for example $d := 1 + (\xi_{i,1}(\underline{x}) - y)$. Then $(\underline{x}, y) \in Cl(]\tilde{\xi}_{i,0}, \xi_{i,1}[)$ and $]\tilde{\xi}_{i,0}, \xi_{i,1}[\subset A$. Now, we can use the preceding result. Namely, we define

$$f = (\phi, \psi) : [0,1] \to R^{n+1} = R^n \times R$$

where

$$\forall t \in [0,1], \ \psi(t) := c[\frac{t}{2}(\tilde{\xi}_{i,0} \circ \phi)(t) + (1 - \frac{t}{2})(\xi_{i,1} \circ \phi)(t)] \\ + (1 - c)[(1 - \frac{t}{2})(\tilde{\xi}_{i,0} \circ \phi)(t) + \frac{t}{2}(\xi_{i,1} \circ \phi)(t)] \\ \text{and} \ c = \begin{vmatrix} \frac{1}{2} & \text{if } \tilde{\xi}_{i,0}(\underline{x}) = \xi_{i,1}(\underline{x}) = y \\ \frac{y - \tilde{\xi}_{i,0}(\underline{x})}{\xi_{i,1}(\underline{x}) - \tilde{\xi}_{i,0}(\underline{x})} & \text{if } \tilde{\xi}_{i,0}(\underline{x}) < \xi_{i,1}(\underline{x}). \end{vmatrix}$$

We obtain:

$$\psi(t) = (\xi_{i,1} \circ \phi)(t) + (\frac{1}{2} - c)dt - d(1 - c).$$

The case for which $j = l_i$ is similar.

2. (a) Let $A \,\subset R^n$ be a semi-algebraic set and $f : A \to R^m$ be a semi-algebraic map. For any $k = 1, \ldots, m$, denote by $\pi_k : R^m \to R$ the projection onto the k^{th} component of R^m , and f_k the semialgebraic map $f_k := \pi_k \circ f : A \to R$. The map f is continuous at some $\underline{x} \in A$ if and only if f_k is continuous at \underline{x} for $k = 1, \ldots, m$. For any $k = 1, \ldots, m$, consider the graph $\Gamma(f_k) := \{(\underline{x}, y) \in A \times R \mid y = f_k(\underline{x})\}$ which is semialgebraic, and a slicing of it $(A_i^{(k)}, \{\xi_{i,j}^{(k)}, j = 1, \ldots, l_{k,i}\})_{i=1,\ldots,n_k}$. From the Theorem of Cellular Decomposition, $\Gamma(f_k)$ is the finite union of $\Gamma(\xi_{i,j}^{(k)})$ and slices $|\xi_{i,j}^{(k)}, \xi_{i,j+1}^{(k)}|$. But since $\Gamma(f_k)$ is a graph, it has empty interior. So it is only a finite union of graphs of $\xi_{i,j}^{(k)}$ s. More precisely, for each $i = 1, \ldots, n_k$, we have $f_k(\underline{x}) = \xi_{i,j}^{(k)}(\underline{x})$ for all $\underline{x} \in A_i^{(k)}$, for some fixed $j = 1, \ldots, l_{k,i}$. Now, we notice that f_k is continuous on each $A_i^{(k)}$ since the corresponding $\xi_{i,j}^{(k)}$ is so. To conclude it suffices to consider the decomposition $(A_i)_i$ of A which is the intersection of all the decompositions $(A_i^{(k)})_{i=1,...,n_k}$: f is then continuous on each of the A_i 's.

(b) From the preceding result, there exists a semi-algebraic decomposition $I = I_1 \bigcup \cdots \bigcup I_m$ such that $f_{|I_k|}$ is continuous. Then, notice that semi-algebraic subsets of *R* are finite unions of intervals and points.

- 3. Consider a semi-algebraic subset $A \subset \mathbb{R}^n$, and an element $x \in A$. Consider a semi-algebraic neighbourhood U of x in A. Let U_0 be the semi-algebraic connected component of U which contains x. Then U_0 is open in U and is a semi-algebraically connected neighbourhood of x in U.
- 4. For $\underline{x} \in \mathbb{R}^n$, let $A_{\underline{x}} := \{t \in \mathbb{R} \mid (\underline{x}, y) \in A\}$. Since $A_{\underline{x}}$ is semi-algebraic in \mathbb{R} , it is a finite union of points and intervals. For any $\underline{x} \in \pi(A)$, $A_{\underline{x}}$ is nonempty. We define $f(\underline{x})$ by:

(a) if $A_x = R$, let $f(\underline{x}) := 0$;

(b) if $A_{\underline{x}}$ has a least element t_0 , let $f(\underline{x}) := t_0$;

(c) if the leftmost interval of $A_{\underline{x}}$ is $]t_0,t_1[$, let $f(\underline{x}) := \frac{t_0 + t_1}{2};$

(d) if the leftmost interval of $A_{\underline{x}}$ is $] - \infty, t_0[$, let $f(\underline{x}) := t_0 - 1;$

(e) if the leftmost interval of $A_{\underline{x}}$ is $]t_0, +\infty[$, let $f(\underline{x}) = t_0 + 1$. This exhausts all possibilities. Clearly, f is semi-algebraic and $(\underline{x}, f(\underline{x})) \in A$ when $\underline{x} \in \pi(A)$.