Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 11

These exercises will be collected Tuesday 19 January in the mailbox number 15 of the Mathematics department.

Theorem 0.1 (Curve Selection Lemma) Let R be a real closed field. Let A be a semialgebraic subset of R^n and $\underline{x} \in R^n$ a point belonging to \overline{A} , the closure of A. Then there exists a continuous semi-algebraic map

$$f:[0,1]\to R^n$$

such that $f(0) = \underline{x}$ and $f(]0,1]) \subset A$.

Definition 0.2 A polynomial $f(\underline{X}, Y) \in R[\underline{X}, Y]$ is said to be **quasi-monic** with respect to Y if

$$f(X,Y) = a_d Y^d + g_{d-1}(X) Y^{d-1} + \dots + g_0(X),$$

where a_d is a nonzero element of R.

The Curve Selection Lemma is proved together with the following lemma: **Lemma 0.3** Denote $\underline{X} = (X_1, ..., X_n)$. Let $f_1, ..., f_s$ be a family of polynomials in $R[\underline{X}, Y]$. Suppose that the family is **stable under derivation** with respect to Y and that all f_k are **quasi-monic** with respect to Y. Let $(A_i, (\xi_{i,j})_{j=1,...,k_l})_{i=1,...,m}$ be a slicing of $f_1, ..., f_s$. Then every function $\xi_{i,j}$ can be continuously extended to $\overline{A_i}$.

This exercise deals with two claims used in the case (*iii*) of the proof of the Curve Selection Lemma and the Lemma 0.3. Namely, the case (*iii*) is the one where we suppose that the Curve Selection Lemma and the Lemma 0.3 hold for some n ∈ N, and where we prove that the Curve Selection Lemma holds for n+1. Therefore, we consider a point (<u>x</u>,y) ∈ A in the closure of some semi-algebraic subset A ⊂ Rⁿ⁺¹. Let f₁,...,f_s ∈ R[<u>X</u>,Y] be a family of non trivial polynomials defining A (as a boolean combination of equations and inequalities).

(a) (i) Show that any non trivial polynomial in $R[\underline{X}, Y]$ can be reduced to a quasimonic one, using a linear change of variable of type

$$X_i = X'_i + a_i Y, \ a_i \in R, \ i = 1, \dots, n.$$

(ii) Deduce that, without loss of generality, we can suppose that the family f_1, \ldots, f_s defining *A* is quasi-monic and closed under derivation with respect to *Y*.

(b) Now we are concerned with the very last part of the proof of (*iii*). We consider a slicing $(A_i, (\xi_{i,j})_{j=1,...,l_i})_{i=1,...,m}$ of f_1, \ldots, f_s . During the lecture, we delt with the case where the point (\underline{x}, y) is in the closure of a slice $]\xi_{i,j}, \xi_{i,j+1}[\subset A$, with $j = 1, \ldots, l_i - 1$. By Lemma 0.3 for *n*, we noted that $\xi_{i,j}$ and $\xi_{i,j+1}$ can be extended continuously to \underline{x} . Now applying the CSL for *n*, there exists a curve $\phi : [0,1] \rightarrow \mathbb{R}^n$ such that $\phi(0) = \underline{x}$ and $\phi(]0,1]) \subset A_i$. There was a subcase that we did not prove during the lecture: the one where $(\underline{x}, y) \in Cl(\Gamma(\xi_{i,j+1}))$ (these graphs are included in the closure of A_i , but may not be included in A).

(i) Check that the map

$$f = (\phi, \psi) : [0, 1] \to \mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$$

where

$$\begin{aligned} \forall t \in [0,1], \psi(t) &:= c \left[\frac{t}{2} (\xi_{i,j} \circ \phi)(t) + (1 - \frac{t}{2}) (\xi_{i,j+1} \circ \phi)(t) \right] \\ &+ (1 - c) \left[(1 - \frac{t}{2}) (\xi_{i,j} \circ \phi)(t) + \frac{t}{2} (\xi_{i,j+1} \circ \phi)(t) \right] \\ \text{and} \quad c = \begin{vmatrix} \frac{1}{2} & \text{if } \xi_{i,j}(\underline{x}) = \xi_{i,j+1}(\underline{x}) = y \\ \frac{y - \xi_{i,j}(\underline{x})}{\xi_{i,j+1}(\underline{x}) - \xi_{i,j}(\underline{x})} & \text{if } \xi_{i,j}(\underline{x}) < \xi_{i,j+1}(\underline{x}). \end{vmatrix} \end{aligned}$$

verifies the Curve Selection Lemma for n + 1 for all $(\underline{x}, y) \in Cl(]\xi_{i,j}, \xi_{i,j+1}[)$.

(ii) Suppose now that the point (\underline{x}, y) is in the closure of a slice $]\xi_{i,j}, \xi_{i,j+1}[\subset A]$, where either j = 0 which means that the slice is $]-\infty, \xi_{i,1}[$, or $j = l_i$ which means that the slice is $]\xi_{i,l_i}, +\infty[$. Deduce that the Curve Selection Lemma holds for n + 1 in this case and give an explicit formula for f as in the preceding question.

2. (a) Let $A \subset \mathbb{R}^n$ be a semi-algebraic set and $f : A \to \mathbb{R}^m$ be a semi-algebraic map. Show that there exists a semi-algebraic decomposition $A_1 \bigcup \cdots \bigcup A_k = A$ such that $f_{|A_i|}$ is continuous for $i = 1, \ldots, k$.

(b) Let $I \subset R$ be an interval and $f : I \to R^m$ be a semi-algebraic map. Deduce that f is continuous at all but finitely many $x \in I$.

3. Show that any semi-algebraic subset $A \subset \mathbb{R}^n$ is semi-algebraically locally connected, i.e. any $x \in A$ has an arbitrarily small semi-algebraically connected neighbourhood.

4. Consider a semi-algebraic subset $A \subset R^{n+1} = R^n \times R$, and the projection $\pi : R^{n+1} \to R^n, \pi(\underline{x},t) = \underline{x} \ (\underline{x} \in R^n, t \in R).$

Show that there exists a semi-algebraic map $f : \pi(A) \to R$ such that $(\underline{x}, f(\underline{x})) \in A$ when $\underline{x} \in \pi(A)$.