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Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 12 - Lösung

Definition 0.1 Let R be a real closed field. Let A ⊆ Rn be a semi-algbraic set.
(i) A semialgebraic path in A is a continuous semialgebraic map α : (0,1)→ A.
(ii) The set A is semialgebraically compact if for every path α : (0,1) → A,

limt→0+ α(t) exists and is in A.

1. Theorem 0.2 (semialgebraic choice = Semi-algebraische Auswahl) Let A and
B be semialgebraic sets and f : A→ B be a surjective semialgebraic map. Then
f has a semialgebraic inverse, i.e. there is a semialgebraic map g : B→ A with
f (g(y)) = y for any y ∈ B.
Proof. We can suppose A ⊂ Rm and B ⊂ Rn semialgebraic subsets. Decompose f
as

A→γ Γ( f ) ⊂ Rm+n →π B
where γ(x) = (x, f (x)) for any x ∈ A and π(x,y) = y for any (x,y) ∈ Rm+n.
Since γ is bijective, it suffices to find a semialgebraic section for π. In other
words, we consider a semialgebraic set Ã ⊆ Rm+n and the semialgebraic map π.
Then proceed by induction on n : the case n = 1 is given by the exercise 4 of
Blatt 11.

2. Corollary 0.3 (Curve Selection Lemma: unbounded case) Let A ⊆ Rn be an
unbounded semialgebraic set. Then there exists a semialgebraic path α :]0,1[→
A with limt→0 ‖α(t)‖ = +∞.
Proof. Consider the stereographic projection p : S n(0,1) \ {∞} → Rn, which is a
homeomorphism, and its inverse p−1 : Rn → S n(0,1) \ {∞}. From Exercise 4 Part
(b) of Blatt 10, since A is unbounded, we know that ∞ ∈ p−1(A). Now, applying
the Curve Selection Lemma to p−1(A), there exists a semi-algebraic continuous
map β : [0,1[→ S n with β(]0,1[) ⊂ p−1(A) and β(0) = ∞. Then consider the path
α := p ◦ β :]0,1[→ A.
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3. (a)
Lemma 0.4 Let A and B be semialgebraic sets and f : A → B be a semialge-
braic map. Let β :]0,1[→ B be a semialgebraic path in B with β(]0,1[) ⊆ f (A).
Then there exists c ∈ R with 0 < c < 1 and there exists a semialgebraic path
α :]0,c[→ A such that β(t) = f (α(t)) for any t ∈]0,c[.
Proof. From the Theorem of Semialgebraic Choice here above, there exists a se-
mialgebraic α :]0,1[→ A such that f ◦ α = β. Now, from Exercise 2.(b) of Blatt
11, the map α is continuous for all but finitely many points of ]0,1[. Then consi-
der c ∈]0,1[ the smallest point for which α is not continuous. So it is continuous
on ]0,c[.

(b) Let A be a semialgebraically compact set and f : A → R a semialgebraic
function. Using the cited result, f (A) is sa compact in R. So, by the Theorem on
the characterisation of sa compact sets, f (A) is closed and bounded in R. But any
semialgebraic set of R is a finite union of points and intervals. So f (A) is of the

form
k⋃

i=0

[ai,bi] for some k ∈ N with ai,bi ∈ R for all i = 1, . . . ,k. Thus it has a

least element and a greatest element.

4. (a) Let A ⊆ Rn be a semialgebraic set, x ∈ A. For any non negative integer k, the
open ball Bn(x,1/2k) is a semialgebraic neighborhood of x in Rn. So for any k,
Uk := Bn(x,1/2k) ∩ A is semi-algebraic and non empty since it contains x. Thus
it has dimension dk.
Underline that for any semialgebraic sets A and B, if A ⊂ B then dim A ≤ dim B
(follows directly from the definition of the semialgebraic dimension). Thus, since
Uk+1 ⊂ Uk for any k, we have dk+1 ≤ dk. But such a decreasing sequence of non
negative integers needs to stabilize: ∃k0, ∀k ≥ k0, dk = dk0 . Then put U := Uk0

and d := dk0 .

The integer d is called the dimension of A at x and denoted by dimx A.

(b) Consider a cell decomposition A =
⋃̇m

i=1
Ci (disjoint union) of A, i.e. for each

i, Ci is isomorphic to (0,1)di for some non negative integer di. Then d := dim A =

maxi=1,...,m(di) by definition. Say d = d1 for instance.
For any x ∈ C1, there exist an open neighborhood U of x in Rn and a nonnegative
integer d′1 such that, for every semialgebraic neighborhood V ⊂ U of x in Rn,
dim(V ∩A) = d′1. We want to show that d′1 = d1. First, we note that dim(V ∩A) =

d′1 ≤ d1 = dim A, since V ∩ A ⊂ A.
Consider U1 := U ∩ C1 which is an open neighborhood of x in C1 ⊂ A. Since
C1 is homeomorphic to (0,1)d1 , U1 must contain some open ball Bd1 (x,r). Then,
up to a restriction of U to Bn(x,r), we obtain that for any semi-algebraic neigh-
borhood V ⊂ U, dim V ∩ A = d1, which means that d′1 = d1.

(c) Denote D := {x ∈ A; dimx A = dim A} and consider x ∈ D the closure of D.
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For any open neighborhood V ∈ Rn of x, it contains a point y ∈ D. But, there
exists an open neighborhood Uy of y such that, for any semi-algebraic neighbo-
rhood Vy ⊂ Uy of y, dim(Vy ∩ A) = d. So, fix an open neighborhood U of x.
For any open semi-algebraic neighborhood V ⊂ U of x, we have dim(V ∩ A) =

dim(Vy ∩ A) = d. Thus x ∈ D.
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