Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

## Übungen zur Vorlesung Reelle algebraische Geometrie

## Blatt 12 - Lösung

Definition 0.1 Let $R$ be a real closed field. Let $A \subseteq R^{n}$ be a semi-algbraic set.
(i) A semialgebraic path in $A$ is a continuous semialgebraic map $\alpha:(0,1) \rightarrow A$.
(ii) The set $A$ is semialgebraically compact if for every path $\alpha:(0,1) \rightarrow A$, $\lim _{t \rightarrow 0^{+}} \alpha(t)$ exists and is in $A$.

1. Theorem 0.2 (semialgebraic choice $=$ Semi-algebraische Auswahl) Let $A$ and $B$ be semialgebraic sets and $f: A \rightarrow B$ be a surjective semialgebraic map. Then $f$ has a semialgebraic inverse, i.e. there is a semialgebraic map $g: B \rightarrow A$ with $f(g(y))=y$ for any $y \in B$.
Proof. We can suppose $A \subset R^{m}$ and $B \subset R^{n}$ semialgebraic subsets. Decompose $f$ as

$$
A \rightarrow^{\gamma} \Gamma(f) \subset R^{m+n} \rightarrow^{\pi} B
$$

where $\gamma(\underline{x})=(\underline{x}, f(\underline{x}))$ for any $\underline{x} \in A$ and $\pi(\underline{x}, \underline{y})=\underline{y}$ for any $(\underline{x}, \underline{y}) \in R^{m+n}$.
Since $\gamma$ is bijective, it suffices to find a semialgebraic section for $\pi$. In other words, we consider a semialgebraic set $\tilde{A} \subseteq R^{m+n}$ and the semialgebraic map $\pi$. Then proceed by induction on $n$ : the case $n=1$ is given by the exercise 4 of Blatt 11.
2. Corollary 0.3 (Curve Selection Lemma: unbounded case) Let $A \subseteq R^{n}$ be an unbounded semialgebraic set. Then there exists a semialgebraic path $\alpha:] 0,1[\rightarrow$ A with $\lim _{t \rightarrow 0}\|\alpha(t)\|=+\infty$.
Proof. Consider the stereographic projection $p: S_{n}(\underline{0}, 1) \backslash\{\infty\} \rightarrow R^{n}$, which is a homeomorphism, and its inverse $p^{-1}: R^{n} \rightarrow S_{n}(\underline{0}, 1) \backslash\{\infty\}$. From Exercise 4 Part (b) of Blatt 10 , since $A$ is unbounded, we know that $\infty \in \overline{p^{-1}(A)}$. Now, applying the Curve Selection Lemma to $p^{-1}(A)$, there exists a semi-algebraic continuous $\operatorname{map} \beta:\left[0,1\left[\rightarrow S^{n}\right.\right.$ with $\beta(] 0,1[) \subset p^{-1}(A)$ and $\beta(0)=\infty$. Then consider the path $\alpha:=p \circ \beta:] 0,1[\rightarrow A$.
3. (a)

Lemma 0.4 Let $A$ and $B$ be semialgebraic sets and $f: A \rightarrow B$ be a semialgebraic map. Let $\beta:] 0,1[\rightarrow B$ be a semialgebraic path in $B$ with $\beta(] 0,1[) \subseteq f(A)$. Then there exists $c \in R$ with $0<c<1$ and there exists a semialgebraic path $\alpha:] 0, c[\rightarrow A$ such that $\beta(t)=f(\alpha(t))$ for any $t \in] 0, c[$.
Proof. From the Theorem of Semialgebraic Choice here above, there exists a semialgebraic $\alpha:] 0,1[\rightarrow A$ such that $f \circ \alpha=\beta$. Now, from Exercise 2.(b) of Blatt 11 , the map $\alpha$ is continuous for all but finitely many points of $] 0,1[$. Then consi$\operatorname{der} c \in] 0,1[$ the smallest point for which $\alpha$ is not continuous. So it is continuous on $] 0, c[$.
(b) Let $A$ be a semialgebraically compact set and $f: A \rightarrow R$ a semialgebraic function. Using the cited result, $f(A)$ is sa compact in $R$. So, by the Theorem on the characterisation of sa compact sets, $f(A)$ is closed and bounded in $R$. But any semialgebraic set of $R$ is a finite union of points and intervals. So $f(A)$ is of the form $\bigcup_{i=0}^{k}\left[a_{i}, b_{i}\right]$ for some $k \in \mathbb{N}$ with $a_{i}, b_{i} \in R$ for all $i=1, \ldots, k$. Thus it has a least element and a greatest element.
4. (a) Let $A \subseteq R^{n}$ be a semialgebraic set, $x \in A$. For any non negative integer $k$, the open ball $B_{n}\left(x, 1 / 2^{k}\right)$ is a semialgebraic neighborhood of $x$ in $R^{n}$. So for any $k$, $U_{k}:=B_{n}\left(x, 1 / 2^{k}\right) \cap A$ is semi-algebraic and non empty since it contains $x$. Thus it has dimension $d_{k}$.
Underline that for any semialgebraic sets $A$ and $B$, if $A \subset B$ then $\operatorname{dim} A \leq \operatorname{dim} B$ (follows directly from the definition of the semialgebraic dimension). Thus, since $U_{k+1} \subset U_{k}$ for any $k$, we have $d_{k+1} \leq d_{k}$. But such a decreasing sequence of non negative integers needs to stabilize: $\exists k_{0}, \forall k \geq k_{0}, d_{k}=d_{k_{0}}$. Then put $U:=U_{k_{0}}$ and $d:=d_{k_{0}}$.

The integer $d$ is called the dimension of $A$ at $x$ and denoted by $\operatorname{dim}_{x} A$.
(b) Consider a cell decomposition $A=\bigcup_{i=1}^{m} C_{i}$ (disjoint union) of $A$, i.e. for each $i, C_{i}$ is isomorphic to $(0,1)^{d_{i}}$ for some non negative integer $d_{i}$. Then $d:=\operatorname{dim} A=$ $\max _{i=1, \ldots, m}\left(d_{i}\right)$ by definition. Say $d=d_{1}$ for instance.
For any $x \in C_{1}$, there exist an open neighborhood $U$ of $x$ in $R^{n}$ and a nonnegative integer $d_{1}^{\prime}$ such that, for every semialgebraic neighborhood $V \subset U$ of $x$ in $R^{n}$, $\operatorname{dim}(V \cap A)=d_{1}^{\prime}$. We want to show that $d_{1}^{\prime}=d_{1}$. First, we note that $\operatorname{dim}(V \cap A)=$ $d_{1}^{\prime} \leq d_{1}=\operatorname{dim} A$, since $V \cap A \subset A$.
Consider $U_{1}:=U \cap C_{1}$ which is an open neighborhood of $x$ in $C_{1} \subset A$. Since $C_{1}$ is homeomorphic to $(0,1)^{d_{1}}, U_{1}$ must contain some open ball $B_{d_{1}}(x, r)$. Then, up to a restriction of $U$ to $B_{n}(x, r)$, we obtain that for any semi-algebraic neighborhood $V \subset U, \operatorname{dim} V \cap A=d_{1}$, which means that $d_{1}^{\prime}=d_{1}$.
(c) Denote $D:=\left\{x \in A ; \operatorname{dim}_{x} A=\operatorname{dim} A\right\}$ and consider $x \in \bar{D}$ the closure of $D$.

For any open neighborhood $V \in R^{n}$ of $x$, it contains a point $y \in D$. But, there exists an open neighborhood $U_{y}$ of $y$ such that, for any semi-algebraic neighborhood $V_{y} \subset U_{y}$ of $y, \operatorname{dim}\left(V_{y} \cap A\right)=d$. So, fix an open neighborhood $U$ of $x$. For any open semi-algebraic neighborhood $V \subset U$ of $x$, we have $\operatorname{dim}(V \cap A)=$ $\operatorname{dim}\left(V_{y} \cap A\right)=d$. Thus $x \in D$.

