Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 12

These exercises will be collected Tuesday 26 January in the mailbox number 15 of the Mathematics department.

Definition 0.1 Let R be a real closed field. Let $A \subseteq R^{n}$ be a semi-algbraic set.
(i) A semialgebraic path in A is a continuous semialgebraic map $\alpha:(0,1) \rightarrow A$.
(ii) The set A is semialgebraically compact iffor every path $\alpha:(0,1) \rightarrow A, \lim _{t \rightarrow 0^{+}} \alpha(t)$ exists and is in A.

1. Prove the following theorem:

Theorem 0.2 (semialgebraic choice $=$ Semialgebraische Auswahl) Let A and B be semialgebraic sets and $f: A \rightarrow B$ be a surjective semialgebraic map. Then f has a semialgebraic section, i.e. there is a semialgebraic map $g: B \rightarrow A$ with $f(g(y))=y$ for any $y \in B$.
(Hint: use Exercise 4 in Blatt 11.)
2. Prove the following Corollary from Lecture 21:

Corollary 0.3 (Curve Selection Lemma: unbounded case) Let $A \subseteq R^{n}$ be an unbounded semialgebraic set. Then there exists a semialgebraic path $\alpha:] 0,1[\rightarrow$ A with $\lim _{t \rightarrow 0}\|\alpha(t)\|=+\infty$.
(Hint: use the results about stereographic projection obtained in Exercise 4 of Blatt 10.)
3. (a) The following Lemma has been used in Lecture 21 to prove the theorem on the image of a semialgebraically compact set by a semialgebraic map. Prove it:
Lemma 0.4 Let A and B be semialgebraic sets and $f: A \rightarrow B$ be a semialgebraic map. Let $\beta:] 0,1[\rightarrow B$ be a semialgebraic path in B with $\beta(] 0,1[) \subseteq f(A)$. Then there exists $c \in R$ with $0<c<1$ and there exists a semialgebraic path $\alpha:] 0, c[\rightarrow A$ such that $\beta(t)=f(\alpha(t))$ for any $t \in] 0, c[$.
(Hint: use the result of Exercise 2.(b) of Blatt 11.)
(b) Let A be a semialgebraically compact set. Deduce that any semialgebraic function $f: A \rightarrow R$ has a minimum and a maximum.
4. (a) Let $A \subseteq R^{n}$ be a semialgebraic set, $x \in A$. Show that there exist a neighborhood U of x in R^{n} and a nonnegative integer d such that, for every semialgebraic neighborhood $V \subset U$ of x in $R^{n}, \operatorname{dim}(V \cap A)=d$.

The integer d is called the dimension of A at x and is denoted by $\operatorname{dim}_{x} A$.
(b) Show that

$$
\operatorname{dim} A=\max \left\{\operatorname{dim}_{x} A ; x \in A\right\} .
$$

(c) Show that $\left\{x \in A ; \operatorname{dim}_{x} A=\operatorname{dim} A\right\}$ is a closed semialgebraic subset of A.

