Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 12

These exercises will be collected Tuesday 26 January in the mailbox number 15 of the Mathematics department.

Definition 0.1 Let R be a real closed field. Let $A \subseteq R^n$ be a semi-algbraic set. (i) A semialgebraic path in A is a continuous semialgebraic map $\alpha : (0,1) \to A$. (ii) The set A is semialgebraically compact if for every path $\alpha : (0,1) \to A$, $\lim_{t\to 0^+} \alpha(t)$

exists and is in A.

1. Prove the following theorem:

Theorem 0.2 (semialgebraic choice = Semialgebraische Auswahl) Let A and B be semialgebraic sets and $f : A \to B$ be a surjective semialgebraic map. Then f has a semialgebraic section, i.e. there is a semialgebraic map $g : B \to A$ with f(g(y)) = y for any $y \in B$.

(Hint: use Exercise 4 in Blatt 11.)

2. Prove the following Corollary from Lecture 21:

Corollary 0.3 (Curve Selection Lemma: unbounded case) Let $A \subseteq \mathbb{R}^n$ be an unbounded semialgebraic set. Then there exists a semialgebraic path α :]0,1[\rightarrow A with $\lim_{t\to 0} ||\alpha(t)|| = +\infty$.

(Hint: use the results about stereographic projection obtained in Exercise 4 of Blatt 10.)

3. (a) The following Lemma has been used in Lecture 21 to prove the theorem on the image of a semialgebraically compact set by a semialgebraic map. Prove it:

Lemma 0.4 Let A and B be semialgebraic sets and $f : A \to B$ be a semialgebraic map. Let $\beta :]0,1[\to B$ be a semialgebraic path in B with $\beta(]0,1[) \subseteq f(A)$. Then there exists $c \in R$ with 0 < c < 1 and there exists a semialgebraic path $\alpha :]0,c[\to A \text{ such that } \beta(t) = f(\alpha(t)) \text{ for any } t \in]0,c[.$

(Hint: use the result of Exercise 2.(b) of Blatt 11.)

(b) Let A be a semialgebraically compact set. Deduce that any semialgebraic function $f : A \rightarrow R$ has a minimum and a maximum.

4. (a) Let $A \subseteq \mathbb{R}^n$ be a semialgebraic set, $x \in A$. Show that there exist a neighborhood U of x in \mathbb{R}^n and a nonnegative integer d such that, for every semialgebraic neighborhood $V \subset U$ of x in \mathbb{R}^n , dim $(V \cap A) = d$.

The integer *d* is called the **dimension of** *A* **at** *x* and is denoted by $\dim_x A$.

(b) Show that

 $\dim A = \max\{\dim_x A; x \in A\}.$

(c) Show that $\{x \in A; \dim_x A = \dim A\}$ is a closed semialgebraic subset of A.