Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 13 - Solution

1. **Definition 0.1** Let (M,v) be a valued (=bewerte) module and $\Gamma = v(M \setminus \{0\})$ its value set. Für any $\gamma \in \Gamma$, we define $M^{\gamma} := \{x \in M \mid v(x) \ge \gamma\}$, $M_{\gamma} := \{x \in M \mid v(x) > \gamma\}$ which are submodules of M, and $B(M,\gamma) := M^{\gamma}/M_{\gamma}$ which is also a module.

The system of modules $S(M) := [\Gamma, \{B(M, \gamma), \gamma \in \Gamma\}]$ is called the skeleton of (M, ν) .

The aim of this exercise is to prove the following lemma:

Lemma 0.2 The skeleton is an isomorphism invariant, i.e. if two valued modules (M_1,v_1) , (M_2,v_2) are isomorphic, then so are the corresponding two skeletons $S(M_1)$, $S(M_2)$.

(a) Let $h : (M_1,v_1) \to (M_2,v_2)$ be an isomorphism of valued modules, and $\Gamma_1 := v_1(M_1 \setminus \{0\})$ and $\Gamma_2 := v_2(M_2 \setminus \{0\})$ the corresponding value sets. Consider the map

$$\tilde{h}: \Gamma_1 \to \Gamma_2, \ \tilde{h}(v_1(x)) := v_2(h(x)).$$

Take $x, y \in M_1$, with $v_1(x) < v_1(y)$. Since *h* is an isomorphism of valued modules, this implies that $v_2(h(x)) < v_2(h(y))$, so $\tilde{h}(v_1(x)) < \tilde{h}(v_1(y))$. Thus, \tilde{h} is order preserving, which implies that it is injective.

Now, consider $v_2(z) \in \Gamma_2$. Since *h* is an isomorphism of valued modules, there exists a unique $x = h^{-1}(z) \in \Gamma_1$, such that $\tilde{h}^{-1}(v_2(z)) := v_1(x)$. So \tilde{h} is surjective, and therefore is an isomorphism of ordered sets.

Note that by definition *h* preserves the valuation (ist bewertungserhaltend).

(b) For any $\gamma \in \Gamma_1$, we define

$$\begin{array}{rcl} h_{\gamma}: & B(M_{1},\gamma) & \to & B(M_{2},\tilde{h}(\gamma)) \\ & \Pi^{M_{1}}(\gamma,x) & \mapsto & \Pi^{M_{2}}(\tilde{h}(\gamma),h(x)). \end{array}$$

Consider $x \in M_{1,\gamma}$ so that $\Pi^{M_1}(\gamma, x) = x + M_1^{\gamma} \in B(M_1, \gamma)$. Thus $v_1(x) \ge \gamma$. This implies by the preceding question that $v_2(h(x)) \ge \tilde{h}(\gamma)$. So we can define uniquely $h_{\gamma}(x)$ as $h(x) + M_{2,\tilde{h}(\gamma)} = \Pi^{M_2}(\tilde{h}(\gamma), h(x)) \in B(M_2, \tilde{h}(\gamma))$. The map h_{γ} is therefore well-defined.

Moreover, take any $z \in M_2^{\tilde{h}(\gamma)}$ so that $z + M_{2,\tilde{h}(\gamma)} = \Pi^{M_2}(\tilde{h}(\gamma),z) \in B(M_2,\tilde{h}(\gamma))$. Since $v_2(z) \ge \tilde{h}(\gamma)$, we have $v_1(h^{-1}(z)) \ge \gamma$. Then we define uniquely the inverse h_{γ}^{-1} of h_{γ} as $h_{\gamma}^{-1}(\Pi^{M_2}(\tilde{h}(\gamma),z)) := h^{-1}(z) + M_1^{\gamma} = \Pi^{M_1}(\gamma,h^{-1}(x)) \in B(M_1,\gamma)$. Thus h_{γ} is bijective.

Now consider $a, b \in \mathbb{Z}$ (suppose for simplicity \mathbb{Z} is a ring and M_1, M_2 are \mathbb{Z} -modules) and $x, y \in M_1$ with $v_1(x) \ge \gamma$ and $v_1(y) \ge \gamma$. So $ax + by \in M_1$ with $v_1(ax + by) \ge \gamma$ (ultrametric triangular inequality). We have

$$\begin{aligned} h_{\gamma}(a\Pi^{M_{1}}(\gamma, x) + b\Pi^{M_{1}}(\gamma, y)) &= h_{\gamma}(\Pi^{M_{1}}(\gamma, ax + by)) \\ &= \Pi^{M_{2}}(\gamma, x)(\tilde{h}(\gamma), h(ax + by)) \\ &= \Pi^{M_{2}}(\gamma, x)(\tilde{h}(\gamma), ah(x) + bh(y)) \\ &= a\Pi^{M_{2}}(\gamma, x)(\tilde{h}(\gamma), h(x)) + b\Pi^{M_{2}}(\gamma, x)(\tilde{h}(\gamma), h(y)) \\ &= ah_{\gamma}(\Pi^{M_{1}}(\gamma, x)) + bh_{\gamma}(\Pi^{M_{1}}(\gamma, y)). \end{aligned}$$

For any $\gamma \in \Gamma_1$, the map h_{γ} is an isomorphism of modules.

2. Definition 0.3 Consider a system of torsion free modules $S = [\Gamma, \{B(\gamma); \gamma \in \Gamma\}]$, and denote by $\prod_{\gamma \in \Gamma} B(\gamma)$ the corresponding product module. Denote by $\bigoplus_{\gamma \in \Gamma} B(\gamma)$ the submodule of maps $s \in \prod_{\gamma \in \Gamma} B(\gamma)$ with finite support, and $\prod_{\gamma \in \Gamma} B(\gamma)$ the Hahn sum of S, i.e. the valued module $(\bigoplus_{\gamma \in \Gamma} B(\gamma), v_{\min})$ where $v_{\min}(s) := \min(\text{support } s)$ for all $s \in \bigoplus_{\gamma \in \Gamma} B(\gamma) \setminus \{0\}$.

Denote by $H_{\gamma \in \Gamma}^{\gamma \in I} B(\gamma)$ the **Hahn product** of *S*, i.e. the submodule of maps $s \in \prod_{\gamma \in \Gamma} B(\gamma)$ with well-ordered support, also equipped with the valuation v_{\min} .

(a) Let *Z* be the coefficient ring of the modules $B(\gamma)$. Check that the Hahn sum and the Hahn product equipped with v_{\min} are valued \mathbb{Z} -modules. We sketch the case of the Hahn product. Firstly, note that the linear combination of two maps s_1 and s_2 in $\prod_{\gamma \in \Gamma} B(\gamma)$ with well-ordered supports, has itself well-ordered support

(indeed, the support of the linear combination is included into the union of the supports of s_1 and s_2). So $\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$ is a module. Secondly, show that v_{\min} is a valuation, checking the definition of a valuation:

• $v(s) = \infty$ if and only if s = 0: indeed, whenever $s \neq 0$, it has a non empty well-ordered support which has a minimum, and therefore $v_{\min}(s) \neq \infty$;

• v(rs) = v(s) for any $r \in \mathbb{Z} \setminus \{0\}$: the multiplication by a scalar does not change the minimum of the support;

• by definition $v(s_1-s_2) = \min(\text{support } s_1-s_2)$. But support $s_1-s_2 \subseteq \text{support } s_1 \cup \text{support } s_2$. So $\min\{\text{support } s_1 - s_2\} \ge \min\{\min(\text{support } s_1), \min(\text{support } s_2\} = \min\{v_{\min}(s_1), v_{\min}(s_2)\}$.

For the Hahn sum note that, since the linear combination of two maps s_1 and s_2 in $\prod_{\gamma \in \Gamma} B(\gamma)$ with finite supports, has itself finite support, the Hahn sum is a valued

submodule of the Hahn product.

(b) Denote $M := \coprod_{\gamma \in \Gamma} B(\gamma)$ and $N := \mathbf{H}_{\gamma \in \Gamma} B(\gamma)$. Clearly, we have $v_{\min}(M \setminus \{0\}) = \Gamma$. Moreover: $M^{\gamma} = \{s \in M \text{ such that } \min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } s \in \coprod_{\delta \ge \gamma} B(\delta)\};$ $M_{\gamma} = \{s \in M \text{ such that } \min(\text{support } s) > \gamma\}$ $= \{s \in M \text{ such that } s \in \coprod_{\delta \ge \gamma} B(\delta)\};$ $N^{\gamma} = \{s \in N \text{ such that } \min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$ $= \{s \in M \text{ such that } min(\text{support } s) \ge \gamma\}$

So $B(M,\gamma) = \{s + M_{\gamma}; s \in M^{\gamma}\}$ and $B(N,\gamma) = \{s + N_{\gamma}; s \in N^{\gamma}\}$ which are canonically isomorphic to $B(\gamma)$ as modules.

3. **Definition 0.4** *Let* (Γ, \leq) *be a totally ordered set. We say that* Γ *is well-ordered if any non empty subset* $A \subseteq \Gamma$ *has a least element.*

Given a well-ordered set (Γ, \leq) , its **order type** $ot(\Gamma)$ is defined to be a fixed representative of its equivalence class by ordered set isomorphism, and is called an **ordinal number**. In particular, the order type of the set of natural numbers is denoted by $ot(\mathbb{N}) := \omega$. It is the smallest infinite ordinal number.

(a) Given 2 ordered sets (A, \leq) and (B, \leq) , one defines the **sum of ordered sets**: $(A, \leq_A) + (B, \leq_B) = A + B := (A \sqcup B, \leq_+) (\sqcup = \text{disjoint union})$ such that for any $c_1, c_2 \in A \sqcup B$, $c_1 \leq_+ c_2 \Leftrightarrow \begin{cases} \text{either } (c_1, c_2 \in A \text{ and } c_1 \leq_A c_2) \\ \text{or } (c_1 \in A, c_2 \in B \text{ and } c_1 <_+ c_2) \end{cases}$. $\text{or } (c_1, c_2 \in B \text{ and } c_1 \leq_+ c_2).$

Consider a nonempty subset $C \subseteq A + B$. As a set, $C = (C \cap A) \sqcup (C \cap B)$ with at least one of the two $C_A = C \cap A$ and $C_B = C \cap B$ which is nonempty. Whenever it is nonempty, as a subset of a well-ordered set C_A , respectively C_B , has a least element, say c_A , respectively c_B . Then, whenever B, respectively A, is empty, c_A , respectively c_B , is the least element of C itself. If A and B are nonempty, we have $c_A < B$ by definition of the ordering on A+B. So c_A is the least element of C.

(b) Suppose that *A* and *B* are well-ordered sets. Denote $\alpha := ot(A)$ and $\beta := ot(B)$.

One defines the **sum of ordinals** as

$$\alpha + \beta := ot(A + B).$$

Given any other well-ordered sets A' and B' with $ot(A') = \alpha$ and $ot(B') = \beta$, we just have to show that $ot(A' + B') = \alpha + \beta$, i.e. A' + B' is order isomorphic to A + B. Consider some isomorphisms of ordered sets $\phi : A \to A'$ and $\psi : B \to B'$. We define the map $\Phi : A + B \to A' + B'$ such that for any $c \in A + B$, if $c \in A$, $\Phi(c) := \phi(c) \in A'$, and if $c \in B$, $\Phi(c) := \psi(c) \in B'$. Then it is easy to show that Φ is an isomorphism of ordered sets.

Concerning the non commutativity, we consider $1 + \omega$ and $\omega + 1$. We have $ot(1 + \omega) = \omega$ which has no greatest element, whereas the 1 on the right side is the greatest element of $\omega + 1$: the two sets $1 + \omega$ and $\omega + 1$ cannot be order isomorphic.

(c) Define for any $k, l \in \mathbb{N}^*$, $a_{k,l} := k - \frac{1}{l}$. Then the set $Q_n := \bigcup_{k=1}^n \bigcup_{l \in \mathbb{N}^*} \{a_{k,l}\}$ endowed with the retriction of the ordering on \mathbb{Q} , is a totally ordered set with order type $\omega.n$.

(d) Given 2 ordered sets (A, \leq_A) and (B, \leq_B) , one defines the **product of ordered** sets:

 $(B, \leq_B).(A, \leq_A) = B.A := (A \times B, \leq_{lex}) \text{ such that } \leq_{lex} \text{ is the lexicographic} \\ \text{ordering, i.e. for any } (a_1,b_1),(a_2,b_2) \in A \times B, \\ (a_1,b_1) \leq_{lex} (a_2,b_2) \Leftrightarrow \begin{cases} a_1 <_A a_2 \\ \text{or } a_1 = a_2 \text{ and } b_1 \leq_B b_2 \end{cases}.$

Consider a nonempty subset $C \subset B.A$. Then it can be written as $C = \bigcup \{a\} \times$

 $C_{a,B}$, with $\emptyset \neq C_A \subset A$ and for any $a \in C_A$, $\emptyset \neq C_{a,B} \subset B$. As nonempty subsets of well-ordered sets, C_A has a least element a_C , and $C_{a_C,B}$ has a least element b_C . Then (a_C, b_C) is the least element of *B.A*.

(e) Suppose that *A* and *B* are well-ordered sets. Denote $\alpha := ot(A)$ and $\beta := ot(B)$, one defines the **product of ordinals**:

$$\alpha.\beta := ot(A.B).$$

Given any other well-ordered sets A' and B' with $ot(A') = \alpha$ and $ot(B') = \beta$, we just have to show that $ot(B'.A') = \beta.\alpha$, i.e. B'.A' is order isomorphic to B.A. Consider some isomorphisms of ordered sets $\phi : A \to A'$ and $\psi : B \to B'$. We define the map $\Psi : B.A \to B'.A'$ such that for any $(a,b) \in B.A$, $\Psi(a,b) :=$ $(\phi(a),\psi(b)) \in B'.A'$. Then Ψ is clearly bijective. Moreover, take any $(a_1,b_1) >$ $(a_2,b_2) \in B.A$, then either $a_1 > a_2$ which would imply that $\phi(a_1) > \phi(a_2)$ and so $\Psi(a_1,b_1) > \Psi(a_2,b_2) \in B'.A'$, or $a_1 = a_2$ and $b_1 > b_2$ which would imply that $\phi(a_1) = \phi(a_2)$ and $\psi(b_1) > \psi(b_2)$, and also $\Psi(a_1,b_1) > \Psi(a_2,b_2) \in B'.A'$.

For the non commutativity, consider 2. ω and ω .2. Consider the set $\mathbb{N} \times \{0,1\}$ endowed with the lexicographic ordering. It is clearly order isomorphic to 2. ω . Then the map $f : \mathbb{N} \times \{0,1\} \to \mathbb{N}$ such that $f(n,\epsilon) := 2n + \epsilon$ (where $\epsilon \in \{0,1\}$),

is an isomorphism of orderings. Thus $ot(2.\omega) = \omega$. But $\omega . 2 = \omega + \omega$ cannot be order isomorphic to ω (it contains $\omega + 1$ as an initial segment).

(f) Consider the map

$$\begin{array}{rccc} f: & \mathbb{N}^* \times \mathbb{Q}^* & \to & \mathbb{Q} \\ & & & & & \\ & & & & & k - \frac{1}{l}. \end{array}$$

and we define by induction on $n \in \mathbb{N}^*$,

for any
$$n \in \mathbb{N}^*$$
, for any tuple $(k_1, \dots, k_n) \in [\mathbb{N} * \times (\mathbb{N}^* \setminus \{1\})^{n-2} \times \mathbb{N}^*]$

$$\begin{cases}
a_{(k_1)} := k_1 \\
a_{(k_1,\dots,k_n)} := f(k_n, a_{(k_1,\dots,k_{n-1})}) \\
= k_n - \frac{1}{a_{(k_1,\dots,k_{n-1})}}.
\end{cases}$$

Then for any $n \in \mathbb{N}^*$, we define $Q_n := \bigcup_{\substack{(k_1, \dots, k_n) \in [\mathbb{N}^* \times (\mathbb{N}^* \setminus \{1\})^{n-2} \times \mathbb{N}^*]}} \{a_{(k_1, \dots, k_n)}\}$. Then Q_n endowed with the ordering of \mathbb{Q} is order isomorphic to ω^n .