Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 13 - Solution

1. Definition 0.1 Let (M, v) be a valued (=bewerte) module and $\Gamma=v(M \backslash\{0\})$ its value set. Für any $\gamma \in \Gamma$, we define $M^{\gamma}:=\{x \in M \mid v(x) \geq \gamma\}, M_{\gamma}:=\{x \in$ $M \mid v(x)>\gamma\}$ which are submodules of M, and $B(M, \gamma):=M^{\gamma} / M_{\gamma}$ which is also a module.
The system of modules $S(M):=[\Gamma,\{B(M, \gamma), \gamma \in \Gamma\}]$ is called the skeleton of (M, v).
The aim of this exercise is to prove the following lemma:
Lemma 0.2 The skeleton is an isomorphism invariant, i.e. if two valued modules $\left(M_{1}, v_{1}\right),\left(M_{2}, v_{2}\right)$ are isomorphic, then so are the corresponding two skeletons $S\left(M_{1}\right), S\left(M_{2}\right)$.
(a) Let $h:\left(M_{1}, v_{1}\right) \rightarrow\left(M_{2}, v_{2}\right)$ be an isomorphism of valued modules, and $\Gamma_{1}:=$ $v_{1}\left(M_{1} \backslash\{0\}\right)$ and $\Gamma_{2}:=v_{2}\left(M_{2} \backslash\{0\}\right)$ the corresponding value sets. Consider the map

$$
\tilde{h}: \Gamma_{1} \rightarrow \Gamma_{2}, \tilde{h}\left(v_{1}(x)\right):=v_{2}(h(x)) .
$$

Take $x, y \in M_{1}$, with $v_{1}(x)<v_{1}(y)$. Since h is an isomorphism of valued modules, this implies that $v_{2}(h(x))<v_{2}(h(y))$, so $\tilde{h}\left(v_{1}(x)\right)<\tilde{h}\left(v_{1}(y)\right)$. Thus, \tilde{h} is order preserving, which implies that it is injective.
Now, consider $v_{2}(z) \in \Gamma_{2}$. Since h is an isomorphism of valued modules, there exists a unique $x=h^{-1}(z) \in \Gamma_{1}$, such that $\tilde{h}^{-1}\left(v_{2}(z)\right):=v_{1}(x)$. So \tilde{h} is surjective, and therefore is an isomorphism of ordered sets. Note that by definition h preserves the valuation (ist bewertungserhaltend).
(b) For any $\gamma \in \Gamma_{1}$, we define

$$
\begin{array}{llll}
h_{\gamma}: & B\left(M_{1}, \gamma\right) & \rightarrow B\left(M_{2}, \tilde{h}(\gamma)\right) \\
& \Pi^{M_{1}}(\gamma, x) & \mapsto & \Pi^{M_{2}}(\tilde{h}(\gamma), h(x)) .
\end{array}
$$

Consider $x \in M_{1, \gamma}$ so that $\Pi^{M_{1}}(\gamma, x)=x+M_{1}^{\gamma} \in B\left(M_{1}, \gamma\right)$. Thus $v_{1}(x) \geq \gamma$. This implies by the preceding question that $v_{2}(h(x)) \geq \tilde{h}(\gamma)$. So we can define uniquely $h_{\gamma}(x)$ as $h(x)+M_{2, \tilde{h}(\gamma)}=\Pi^{M_{2}}(\tilde{h}(\gamma), h(x)) \in B\left(M_{2}, \tilde{h}(\gamma)\right)$. The map h_{γ} is therefore well-defined.

Moreover, take any $z \in M_{2}^{\tilde{h}(\gamma)}$ so that $z+M_{2, \tilde{h}(\gamma)}=\Pi^{M_{2}}(\tilde{h}(\gamma), z) \in B\left(M_{2}, \tilde{h}(\gamma)\right)$. Since $v_{2}(z) \geq \tilde{h}(\gamma)$, we have $v_{1}\left(h^{-1}(z)\right) \geq \gamma$. Then we define uniquely the inverse h_{γ}^{-1} of h_{γ} as $h_{\gamma}^{-1}\left(\Pi^{M_{2}}(\tilde{h}(\gamma), z)\right):=h^{-1}(z)+M_{1}^{\gamma}=\Pi^{M_{1}}\left(\gamma, h^{-1}(x)\right) \in B\left(M_{1}, \gamma\right)$. Thus h_{γ} is bijective.

Now consider $a, b \in \mathcal{Z}$ (suppose for simplicity \mathcal{Z} is a ring and M_{1}, M_{2} are \mathcal{Z} modules) and $x, y \in M_{1}$ with $v_{1}(x) \geq \gamma$ and $v_{1}(y) \geq \gamma$. So $a x+b y \in M_{1}$ with $v_{1}(a x+b y) \geq \gamma$ (ultrametric triangular inequality). We have

$$
\begin{aligned}
h_{\gamma}\left(a \Pi^{M_{1}}(\gamma, x)+b \Pi^{M_{1}}(\gamma, y)\right) & =h_{\gamma}\left(\Pi^{M_{1}}(\gamma, a x+b y)\right) \\
& =\Pi^{M_{2}}(\gamma, x)(\tilde{h}(\gamma), h(a x+b y)) \\
& =\Pi^{M_{2}}(\gamma, x)(\tilde{h}(\gamma), a h(x)+b h(y)) \\
& =a \Pi^{M_{2}}(\gamma, x)(\tilde{h}(\gamma), h(x))+b \Pi^{M_{2}}(\gamma, x)(\tilde{h}(\gamma), h(y)) \\
& =a h_{\gamma}\left(\Pi^{M_{1}}(\gamma, x)\right)+b h_{\gamma}\left(\Pi^{M_{1}}(\gamma, y)\right) .
\end{aligned}
$$

For any $\gamma \in \Gamma_{1}$, the map h_{γ} is an isomorphism of modules.
2. Definition 0.3 Consider a system of torsion free modules $S=[\Gamma,\{B(\gamma) ; \gamma \in \Gamma\}]$, and denote by $\prod_{\gamma \in \Gamma} B(\gamma)$ the corresponding product module. Denote by $\bigoplus_{\gamma \in \Gamma} B(\gamma)$ the submodule of maps $s \in \prod_{\gamma \in \Gamma} B(\gamma)$ with finite support, and $\coprod_{\gamma \in \Gamma} B(\gamma)$ the Hahn sum of S, i.e. the valued module $\left(\bigoplus_{\gamma \in \Gamma} B(\gamma), v_{\min }\right)$ where $v_{\min }(s):=\min ($ support $s)$ for all $s \in \bigoplus_{\gamma \in \Gamma} B(\gamma) \backslash\{0\}$.
Denote by $\boldsymbol{H}_{\gamma \in \Gamma} B(\gamma)$ the Hahn product of S, i.e. the submodule of maps $s \in$ $\prod_{\gamma \in \Gamma} B(\gamma)$ with well-ordered support, also equipped with the valuation $v_{\min }$.
(a) Let Z be the coefficient ring of the modules $B(\gamma)$. Check that the Hahn sum and the Hahn product equipped with $v_{\min }$ are valued \mathcal{Z}-modules. We sketch the case of the Hahn product. Firstly, note that the linear combination of two maps s_{1} and s_{2} in $\prod_{\gamma \in \Gamma} B(\gamma)$ with well-ordered supports, has itself well-ordered support (indeed, the support of the linear combination is included into the union of the supports of s_{1} and s_{2}). So $\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$ is a module. Secondly, show that $v_{\text {min }}$ is a valuation, checking the definition of a valuation:

- $v(s)=\infty$ if and only if $s=0$: indeed, whenever $s \neq 0$, it has a non empty well-ordered support which has a minimum, and therefore $v_{\min }(s) \neq \infty$;
- $v(r s)=v(s)$ for any $r \in \mathcal{Z} \backslash\{0\}$: the multiplication by a scalar does not change the minimum of the support;
- by definition $v\left(s_{1}-s_{2}\right)=\min$ (support $s_{1}-s_{2}$). But support $s_{1}-s_{2} \subseteq$ support $s_{1} \cup$ support s_{2}. So $\min \left\{\right.$ support $\left.s_{1}-s_{2}\right\} \geq \min \left\{\min \left(\operatorname{support} s_{1}\right), \min \left(\right.\right.$ support $\left.s_{2}\right\}=$ $\min \left\{v_{\text {min }}\left(s_{1}\right), v_{\text {min }}\left(s_{2}\right)\right\}$.
For the Hahn sum note that, since the linear combination of two maps s_{1} and s_{2} in $\prod_{\gamma \in \Gamma} B(\gamma)$ with finite supports, has itself finite support, the Hahn sum is a valued submodule of the Hahn product.
(b) Denote $M:=\coprod_{\gamma \in \Gamma} B(\gamma)$ and $N:=\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$. Clearly, we have $v_{\min }(M \backslash\{0\})=$ $v_{\min }(N \backslash\{0\})=\Gamma$.
Moreover:

$$
\begin{aligned}
M^{\gamma} & =\{s \in M \text { such that min(support } s) \geq \gamma\} \\
& =\left\{s \in M \text { such that } s \in \coprod_{\delta \geq \gamma} B(\delta)\right\} ; \\
M_{\gamma} & =\{s \in M \text { such that } \min (\text { support } s)>\gamma\} \\
& =\left\{s \in M \text { such that } s \in \coprod_{\delta>\gamma} B(\delta)\right\} ; \\
N^{\gamma} & =\{s \in N \text { such that } \min (\text { support } s) \geq \gamma\} \\
& =\left\{s \in M \text { such that } s \in \mathbf{H}_{\delta \geq \gamma} B(\delta)\right\} ; \\
N_{\gamma} & =\{s \in N \text { such that } \min (\operatorname{support} s)>\gamma\} \\
& =\left\{s \in M \text { such that } s \in \mathbf{H}_{\delta>\gamma} B(\delta)\right\} .
\end{aligned}
$$

So $B(M, \gamma)=\left\{s+M_{\gamma} ; s \in M^{\gamma}\right\}$ and $B(N, \gamma)=\left\{s+N_{\gamma} ; s \in N^{\gamma}\right\}$ which are canonically isomorphic to $B(\gamma)$ as modules.
3. Definition 0.4 Let (Γ, \leq) be a totally ordered set. We say that Γ is well-ordered if any non empty subset $A \subseteq \Gamma$ has a least element.
Given a well-ordered set (Γ, \leq), its order type ot (Γ) is defined to be a fixed representative of its equivalence class by ordered set isomorphism, and is called an ordinal number. In particular, the order type of the set of natural numbers is denoted by ot $(\mathbb{N}):=\omega$. It is the smallest infinite ordinal number.
(a) Given 2 ordered sets (A, \leq) and (B, \leq), one defines the sum of ordered sets: $\left(A, \leq_{A}\right)+\left(B, \leq_{B}\right)=A+B:=\left(A \sqcup B, \leq_{+}\right)(\sqcup=$ disjoint union) such that for any

$$
c_{1}, c_{2} \in A \sqcup B, c_{1} \leq_{+} c_{2} \Leftrightarrow\left\{\begin{array}{l}
\text { either }\left(c_{1}, c_{2} \in A \text { and } c_{1} \leq_{A} c_{2}\right) \\
\text { or }\left(c_{1} \in A, c_{2} \in B \text { and } c_{1}<_{+} c_{2}\right) . \\
\text { or }\left(c_{1}, c_{2} \in B \text { and } c_{1} \leq_{B} c_{2}\right) .
\end{array} .\right.
$$

Consider a nonempty subset $C \subseteq A+B$. As a set, $C=(C \cap A) \sqcup(C \cap B)$ with at least one of the two $C_{A}=C \cap A$ and $C_{B}=C \cap B$ which is nonempty. Whenever it is nonempty, as a subset of a well-ordered set C_{A}, respectively C_{B}, has a least element, say c_{A}, respectively c_{B}. Then, whenever B, respectively A, is empty, c_{A}, respectively c_{B}, is the least element of C itself. If A and B are nonempty, we have $c_{A}<B$ by definition of the ordering on $A+B$. So c_{A} is the least element of C.
(b) Suppose that A and B are well-ordered sets. Denote $\alpha:=o t(A)$ and $\beta:=o t(B)$.

One defines the sum of ordinals as

$$
\alpha+\beta:=o t(A+B) .
$$

Given any other well-ordered sets A^{\prime} and B^{\prime} with $\operatorname{ot}\left(A^{\prime}\right)=\alpha$ and $\operatorname{ot}\left(B^{\prime}\right)=\beta$, we just have to show that $\operatorname{ot}\left(A^{\prime}+B^{\prime}\right)=\alpha+\beta$, i.e. $A^{\prime}+B^{\prime}$ is order isomorphic to $A+B$. Consider some isomorphisms of ordered sets $\phi: A \rightarrow A^{\prime}$ and $\psi: B \rightarrow B^{\prime}$. We define the map $\Phi: A+B \rightarrow A^{\prime}+B^{\prime}$ such that for any $c \in A+B$, if $c \in A$, $\Phi(c):=\phi(c) \in A^{\prime}$, and if $c \in B, \Phi(c):=\psi(c) \in B^{\prime}$. Then it is easy to show that Φ is an isomorphism of ordered sets.
Concerning the non commutativity, we consider $1+\omega$ and $\omega+1$. We have ot $(1+\omega)=\omega$ which has no greatest element, whereas the 1 on the right side is the greatest element of $\omega+1$: the two sets $1+\omega$ and $\omega+1$ cannot be order isomorphic.
(c) Define for any $k, l \in \mathbb{N}^{*}, a_{k, l}:=k-\frac{1}{l}$. Then the set $Q_{n}:=\bigcup_{k=1}^{n} \bigcup_{l \in \mathbb{N}^{*}}\left\{a_{k, l}\right\}$ endowed with the retriction of the ordering on \mathbb{Q}, is a totally ordered set with order type ω.n.
(d) Given 2 ordered sets $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$, one defines the product of ordered sets:
$\left(B, \leq_{B}\right) .\left(A, \leq_{A}\right)=B \cdot A:=\left(A \times B, \leq_{\text {lex }}\right)$ such that $\leq_{\text {lex }}$ is the lexicographic
ordering, i.e. for any $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in A \times B$,

$$
\left(a_{1}, b_{1}\right) \leq_{\operatorname{lex}}\left(a_{2}, b_{2}\right) \Leftrightarrow\left\{\begin{array}{l}
a_{1}<_{A} a_{2} \\
\text { or } a_{1}=a_{2} \text { and } b_{1} \leq_{B} b_{2}
\end{array}\right.
$$

Consider a nonempty subset $C \subset B . A$. Then it can be written as $C=\bigcup_{a \in C_{A}}\{a\} \times$ $C_{a, B}$, with $\emptyset \neq C_{A} \subset A$ and for any $a \in C_{A}, \emptyset \neq C_{a, B} \subset B$. As nonempty subsets of well-ordered sets, C_{A} has a least element a_{C}, and $C_{a_{C}, B}$ has a least element b_{C}. Then $\left(a_{C}, b_{C}\right)$ is the least element of B.A.
(e) Suppose that A and B are well-ordered sets. Denote $\alpha:=o t(A)$ and $\beta:=o t(B)$, one defines the product of ordinals:

$$
\alpha . \beta:=o t(A . B) .
$$

Given any other well-ordered sets A^{\prime} and B^{\prime} with $\operatorname{ot}\left(A^{\prime}\right)=\alpha$ and $\operatorname{ot}\left(B^{\prime}\right)=\beta$, we just have to show that $\operatorname{ot}\left(B^{\prime} . A^{\prime}\right)=\beta . \alpha$, i.e. $B^{\prime} . A^{\prime}$ is order isomorphic to B.A. Consider some isomorphisms of ordered sets $\phi: A \rightarrow A^{\prime}$ and $\psi: B \rightarrow B^{\prime}$. We define the map $\Psi: B . A \rightarrow B^{\prime} . A^{\prime}$ such that for any $(a, b) \in B . A, \Psi(a, b):=$ $(\phi(a), \psi(b)) \in B^{\prime} . A^{\prime}$. Then Ψ is clearly bijective. Moreover, take any $\left(a_{1}, b_{1}\right)>$ $\left(a_{2}, b_{2}\right) \in B . A$, then either $a_{1}>a_{2}$ which would imply that $\phi\left(a_{1}\right)>\phi\left(a_{2}\right)$ and so $\Psi\left(a_{1}, b_{1}\right)>\Psi\left(a_{2}, b_{2}\right) \in B^{\prime} . A^{\prime}$, or $a_{1}=a_{2}$ and $b_{1}>b_{2}$ which would imply that $\phi\left(a_{1}\right)=\phi\left(a_{2}\right)$ and $\psi\left(b_{1}\right)>\psi\left(b_{2}\right)$, and also $\Psi\left(a_{1}, b_{1}\right)>\Psi\left(a_{2}, b_{2}\right) \in B^{\prime} . A^{\prime}$.
For the non commutativity, consider $2 . \omega$ and $\omega .2$. Consider the set $\mathbb{N} \times\{0,1\}$ endowed with the lexicographic ordering. It is clearly order isomorphic to $2 . \omega$. Then the map $f: \mathbb{N} \times\{0,1\} \rightarrow \mathbb{N}$ such that $f(n, \epsilon):=2 n+\epsilon($ where $\epsilon \in\{0,1\})$,
is an isomorphism of orderings. Thus $o t(2 . \omega)=\omega$. But $\omega .2=\omega+\omega$ cannot be order isomorphic to ω (it contains $\omega+1$ as an initial segment).
(f) Consider the map

$$
\begin{aligned}
f: \mathbb{N}^{*} \times \mathbb{Q}^{*} & \rightarrow \mathbb{Q} \\
& (k, l) \\
& \rightarrow k-\frac{1}{l} .
\end{aligned}
$$

and we define by induction on $n \in \mathbb{N}^{*}$,
for any $n \in \mathbb{N}^{*}$, for any tuple $\left(k_{1}, \ldots, k_{n}\right) \in\left[\mathbb{N} * \times\left(\mathbb{N}^{*} \backslash\{1\}\right)^{n-2} \times \mathbb{N}^{*}\right]$

$$
\begin{cases}a_{\left(k_{1}\right)} & :=k_{1} \\ a_{\left(k_{1}, \ldots, k_{n}\right)} & :=f\left(k_{n}, a_{\left(k_{1}, \ldots, k_{n-1}\right)}\right) \\ & =k_{n}-\frac{1}{a_{\left(k_{1}, \ldots, k_{n-1}\right)}}\end{cases}
$$

Then for any $n \in \mathbb{N}^{*}$, we define $Q_{n}:=\bigcup_{\left(k_{1}, \ldots, k_{n}\right) \in\left[\mathbb{N}^{*} \times\left(\mathbb{N}^{*} \backslash\{11)^{n-2} \times \mathbb{N}^{*}\right]\right.}\left\{a_{\left(k_{1}, \ldots, k_{n}\right)}\right\}$. Then Q_{n} endowed with the ordering of \mathbb{Q} is order isomorphic to ω^{n}.

