Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 14 - Lösung

1. Consider a system of valued \mathbb{R}-vector spaces $S=[\mathbb{Q},\{B(q) ; q \in \mathbb{Q}\}]$ with $B(q) \simeq$ \mathbb{R} for any $q \in \mathbb{Q}$, the corresponding Hahn sum $\coprod_{\gamma \in \Gamma} B(\gamma)$ and an automorphism $\sigma: \mathbb{Q} \rightarrow \mathbb{Q}$ of the ordered set (\mathbb{Q}, \leq).
We consider the map

$$
\tilde{\sigma}: \coprod_{\gamma \in \Gamma} B(\gamma) \rightarrow \coprod_{\gamma \in \Gamma} B(\gamma)
$$

such that $\tilde{\sigma}(s)(q):=s(\sigma(q))$ for any $s \in \coprod_{\gamma \in \Gamma} B(\gamma)$ and any $q \in \mathbb{Q}$.
Given any $s_{1}, s_{2} \in \coprod_{\gamma \in \Gamma} B(\gamma)$, and $r_{1}, r_{2} \in \mathbb{R}$, then for any $q \in \mathbb{Q}$, we have:

$$
\begin{aligned}
\tilde{\sigma}\left(r_{1} s_{1}+r_{2} s_{2}\right)(q) & :=\left(r_{1} s_{1}+r_{2} s_{2}\right)(\sigma(q)) \\
& =r_{1} s_{1}(\sigma(q))+r_{2} s_{2}(\sigma(q)) \\
& =r_{1} \tilde{\sigma}\left(s_{1}\right)(q)+r_{2} \tilde{\sigma}\left(s_{2}\right)(q) .
\end{aligned}
$$

Moreover, the following map is the functional inverse $\tilde{\sigma}^{-1}$ of $\tilde{\sigma}$:

$$
\tilde{\sigma}^{-1}: \coprod_{\gamma \in \Gamma} B(\gamma) \rightarrow \coprod_{\gamma \in \Gamma} B(\gamma)
$$

such that $\tilde{\sigma}^{-1}(s)(q):=s\left(\sigma^{-1}(q)\right)$ for any $s \in \coprod_{\gamma \in \Gamma} B(\gamma)$ and any $q \in \mathbb{Q}$, where σ^{-1} is the functional inverse of the automorphism σ. Thus $\tilde{\sigma}$ is bijective.

Consider $s \in \coprod_{\gamma \in \Gamma} B(\gamma)$. We have

$$
\begin{aligned}
v(\tilde{\sigma}(s)) & =\min \{\operatorname{support} \tilde{\sigma}(s)\} \\
& =\min \{q \in \mathbb{Q} \mid \tilde{\sigma}(s)(q) \neq 0\} \\
& =\sigma \min \{q \in \mathbb{Q} \mid s(\sigma(q)) \neq 0\} \\
& =\min \left\{\sigma^{-1}\left(q^{\prime}\right) \in \mathbb{Q} \mid s\left(q^{\prime}\right) \neq 0\right\} \\
& =\sigma^{-1}(\min \{\text { support } s\}) \\
& =\sigma^{-1}(v(s))
\end{aligned}
$$

Since $\sigma^{-1}: \mathbb{Q} \rightarrow \mathbb{Q}$ is an automorphism of the ordered set \mathbb{Q}, we get that $\tilde{\sigma}$ is value preserving and therefore is an automorphism of valued vector spaces.
2. Definition 0.1 Let $(G,+, \leq)$ be an ordered abelian group. A subgroup $C \subset G$ is said to be convex if for any $c_{1}, c_{2} \in C$ and for any $x \in G$ such that $c_{1} \leq x \leq c_{2}$, then $x \in C$.
(a) Let $(G,+, \leq)$ be an ordered abelian group, and C_{1}, C_{2} be two convex subgroups. Suppose for instance that there exists $c_{1} \in C_{1} \backslash C_{2}$. Since C_{2} is convex, then either $c_{1}<C_{2}$ or $C_{2}<c_{1}$. Since G is an ordered abelian group, it implies that $c_{1}<C_{2}<-c_{1}$ or respectively $-c_{1}<C_{2}<c_{1}$. But since C_{1} is convex, for any $c_{2} \in C_{2}$, the inequalities $-c_{1}<c_{2}<c_{1}$ imply that $c_{2} \in C_{1}$. Thus $C_{2} \subseteq C_{1}$.
The group G itself as well as the trivial group $\{0\}$ are clearly convex subgroups of G.
Consider two convex subgroups C_{1}, C_{2} of G. We know that either $C_{1} \subseteq C_{2}$, or $C_{2} \subseteq C_{1}$. Suppose for instance that $C_{2} \subseteq C_{1}$. Then $C_{1} \cap C_{2}=C_{2}$ and $C_{1} \cup C_{2}=C_{1}$ which are convex subgroups of G.
(b) Given a convex subgroup C of an ordered abelian group $(G,+, \leq)$, we define on the group $(G / C,+)$ a relation \leq by

$$
\text { for any } x, y \in G, x \leq y \Rightarrow x+C \leq y+C .
$$

The fact that $(G / C,+)$ is an abelian group follows directly from the fact that the relation

$$
\forall x, y \in G, x \sim_{C} y \Leftrightarrow x-y \in C
$$

is a congruence relation, i.e. an equivalence relation compatible with the addition (if $x_{1} \sim_{C} x_{2}$ and $y_{1} \sim_{C} y_{2}$, then $x_{1}+x_{2} \sim_{C} y_{1}+y_{2}$).

We notice that $x+C \leq y+C$ implies that either $x+C=y+C \Leftrightarrow x-y \in C$, or $x+c_{1}<y+c_{2}$ for any $c_{1}, c_{2} \in C$. The fact that $(G / C, \leq)$ is an ordered set follows directly from the definition of the ordering and the fact that (G, \leq) is totally ordered (check the axioms of reflexivity, anti-symmetry and transitivity).

Concerning the fact that $(G / C, \leq)$ is a totally ordered set, consider $x+C$ and $y+C$ in G / C. Then either $x-y \in C$ which implies that $x+C=y+C$, or we have $x+c_{1}<y+c_{2}$ or $x+c_{1}>y+c_{2}$ for any $c_{1}, c_{2} \in C$ (since C is convex). In these last 2 cases, we have $x<y$ or respectively $x>y$ (since $0 \in C$ as a subgroup of
$G)$ which implies that $x+C<y+C$, respectively $x+C>y+C$.

To show that $(G / C,+, \leq)$ is an ordered abelian group, take any $x+C \leq y+C$ and $z+C$ in G / C. Then $x+C \leq y+C$ implies that either $x+C=y+C \Leftrightarrow x-y \in C$, or $x<y$. So we have either $(x+z)+C=(y+z)+C$, or $x+z<y+z$ in G. But this last inequality implies that $(x+z)+C \leq(y+z)+C$ in G / C.

Definition 0.2 Given two ordered groups $\left(G_{1}, \leq\right)$ and $\left(G_{2}, \leq\right)$, and a group morphism $h:\left(G_{1}, \leq\right) \rightarrow\left(G_{2}, \leq\right)$, we say that h is an order preserving morphism if for any $x, y \in G_{1}, x \leq y \Rightarrow h(x) \leq h(y)$.
(c) The canonical projection $\Pi: G \rightarrow G / C$ is a group morphism. Now, take $x \leq y$ in G. This implies by definition of the ordering on G / C that $\Pi(x)=$ $x+C \leq y+C=\Pi(y)$ in G / C. The canonical projection is order preserving.
3. Definition $0.3 \bullet$ A sequence $s:=\left(a_{\rho}\right)_{\rho \in \Lambda}$ (Λ being a well-ordered set) in a valued vector space (V, v) is said to be pseudo-Cauchy if for any $\rho<\sigma<\tau$, we have $v\left(a_{\sigma}-a_{\rho}\right)<v\left(a_{\tau}-a_{\sigma}\right)$.

- For any $\rho \in \Lambda$, we define $\gamma_{\rho}:=v\left(a_{\rho+1}-a_{\rho}\right)$. Then the sequence $\left(\gamma_{\rho}\right)_{\rho \in \Lambda}$ is strictly increasing in Γ.
- If there exists $\rho_{0} \in \Lambda$ such that for any $\rho \geq \rho_{0}, v\left(a_{\rho}\right)=v\left(a_{\rho_{0}}\right)$, then we define this value to be the ultimate value of $s: \operatorname{Ult}(s):=v\left(a_{\rho_{0}}\right)$.
- An element $x \in V$ is said to be a pseudo-limit of a pseudo-Cauchy sequence $s:=\left(a_{\rho}\right)_{\rho \in \Lambda}$ if $v\left(x-a_{\rho}\right)=\gamma_{\rho}$ for any $\rho \in \Lambda$.
- The breadth of a pseudo-Cauchy sequence $s:=\left(a_{\rho}\right)_{\rho \in \Lambda}$ is by definition $\operatorname{Br}(s):=$ $\left\{y \in V \mid v(y)>\gamma_{\rho} \forall \rho\right\}$.

Consider the ordered set $\Gamma=\mathbb{N} . \mathbb{N}$ which has order type ω^{2} (i.e. the set $\mathbb{N} \times \mathbb{N}$ endowed with the lexicographic order: see ÜA Blatt 13). Consider the system of ordered \mathbb{Q}-vector spaces $S:=[\Gamma,\{B(\gamma) ; \gamma \in \Gamma\})$ where $B(\gamma)=\mathbb{R}$ for any γ, and the corresponding Hahn sum $M:=\coprod_{\gamma \in \Gamma} B(\gamma)$ and Hahn product $N:=\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$ endowed as usual with the valuation $v:=v_{\text {min }}$.
We define the following sequences in M :

- $s^{(1)}:=\left(a_{n}^{(1)}\right)_{n \in \mathbb{N}^{*}}$
where for any $(k, l) \in \Gamma, a_{n}^{(1)}(k, l) \quad:=\left\lvert\, \begin{aligned} & l^{k} \quad \text { if } \quad k \leq n, l \leq n \\ & 0\end{aligned} \quad\right.$ if not \quad.
- $s^{(2)}:=\left(a_{n}^{(2)}\right)_{n \in \mathbb{N}^{*}}$
where for any $(k, l) \in \Gamma, a_{n}^{(2)}(k, l):=\left\lvert\, \begin{aligned} & n^{k} \quad \text { if } \quad k \leq n, l=n \\ & 0\end{aligned} \quad\right.$ if not \quad.
- $s^{(3)}:=\left(a_{n}^{(3)}\right)_{n \in \mathbb{N}^{*}}$
where for any $(k, l) \in \Gamma, a_{n}^{(3)}(k, l) \quad:=\left\lvert\, \begin{aligned} & n^{n} \quad \text { if } \quad k=l=n \\ & 0 \quad \text { if not }\end{aligned}\right.$
(a) For any $p<q \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
& \text { for any }(k, l) \in \Gamma, a_{q}^{(1)}(k, l)-a_{p}^{(1)}(k, l)= \\
& \left\lvert\, \begin{array}{ll}
l^{k} & \text { if }(k \leq p \text { and } p+1 \leq l \leq q) \text { or }(p+1 \leq k \leq q \text { and } l \leq q) \\
0 & \text { if not. }
\end{array}\right. \text { (}
\end{aligned}
$$

So, for any $n<p<q \in \mathbb{N}^{*}$, we compute

$$
v\left(a_{p}^{(1)}-a_{n}^{(1)}\right)=(1, n+1)<(1, p+1)=v\left(a_{q}^{(1)}-a_{p}^{(1)}\right) .
$$

The sequence $s^{(1)}$ is pseudo-Cauchy.
Moreover, we have $\gamma_{n}^{(1)}=(1, n+1)$.
For any $p<q \in \mathbb{N}^{*}$, we have

$$
\text { for any }(k, l) \in \Gamma, a_{q}^{(3)}(k, l)-a_{p}^{(3)}(k, l)=\left\lvert\, \begin{array}{ll}
-p^{k} & \text { if } k \leq p \text { and } l=p \\
q^{k} & \text { if } k \leq q \text { and } l=q \\
0 & \text { if not. }
\end{array}\right.
$$

So, for any $n<p<q \in \mathbb{N}^{*}$, we compute

$$
v\left(a_{p}^{(2)}-a_{n}^{(2)}\right)=(1, n)<(1, p)=v\left(a_{q}^{(2)}-a_{p}^{(2)}\right) .
$$

The sequence $s^{(2)}$ is pseudo-Cauchy.
Moreover, we have $\gamma_{n}^{(2)}=(1, n)$.
For any $p<q \in \mathbb{N}^{*}$, we have

$$
\text { for any }(k, l) \in \Gamma, a_{q}^{(3)}(k, l)-a_{p}^{(3)}(k, l)=\left\lvert\, \begin{array}{ll}
-p^{p} & \text { si } k=l=p \\
q^{q} & \text { si } k=l=q \\
0 & \text { sinon. }
\end{array}\right.
$$

So, for any $n<p<q \in \mathbb{N}^{*}$, we compute

$$
v\left(a_{p}^{(3)}-a_{n}^{(3)}\right)=(n, n)<(p, p)=v\left(a_{q}^{(3)}-a_{p}^{(3)}\right) .
$$

The sequence $s^{(3)}$ is pseudo-Cauchy.
Moreover, we have $\gamma_{n}^{(1)}=(n, n)$.
(b) The value $\operatorname{Ult}\left(s^{(i)}\right)$ is only defined in the case $i=1$, and we have $\operatorname{Ult}\left(s^{(1)}\right)=$ $v\left(a_{1}^{(1)}\right)=(1,1)$.
We also have in M :

$$
\begin{aligned}
\text { - } B r_{M}\left(s^{(1)}\right) & =\coprod_{\gamma \in \mathbb{N}^{+}, \mathbb{N} \subseteq \Gamma} B(\gamma) \\
\text { - } B r_{M}\left(s^{(2)}\right) & =\coprod_{\gamma \in \mathbb{\mathbb { N } ^ { + } \cdot \mathbb { N } \subseteq \Gamma}} B(\gamma) \\
\text { - } B r_{M}\left(s^{(3)}\right) & =\{0\} .
\end{aligned}
$$

and in N :

$$
\begin{aligned}
& \text { - } B r_{N}\left(s^{(1)}\right)=\mathbf{H}_{\gamma \in \mathbb{N}: \mathbb{N} \subseteq \Gamma} B(\gamma) \\
& \text { - } B r_{N}\left(s^{(2)}\right)=\mathbf{H}_{\gamma \in \mathbb{N}^{*} . \mathrm{N} \subseteq \Gamma} B(\gamma) \\
& \text { - } B r_{N}\left(s^{(3)}\right)=\{0\} .
\end{aligned}
$$

(c) Given a pseudo-Cauchy sequence $s:=\left(a_{\rho}\right)_{\rho \in \Lambda}$ and two pseudo-limits x and y, we have $x-y \in \operatorname{Br}(s)$. So, in order to obtain all the pseudo-limits of a given pseudo-Cauchy sequence, it suffices to know one particular pseudo-limit x_{0} and
the breadth $\operatorname{Br}(s)$ of the sequence.
For the sequence $s^{(1)}$, a pseudo-limit $x_{0}^{(1)}$ has to contain $(1, n)$ for all $n \in \mathbb{N}$ in its support (otherwise we would not have $v\left(x_{0}^{(1)}-a_{n}^{(1)}\right)=\gamma_{n}=(1, n+1)$). Thus it cannot be an element of M. So the set of pseudo-limits of $s^{(1)}$ in M is empty.
A pseudo-limit in N is given for instance by

$$
x_{0}^{(1)}(k, l):=\left\lvert\, \begin{array}{cc}
l & \text { if } \quad k=1, l \in \mathbb{N} \\
0 & \text { if not }
\end{array}\right.
$$

Thus the set of all pseudo-limits of $s^{(1)}$ in N is given by

$$
x^{(1)}+B r_{N}\left(s^{(1)}\right)=x^{(1)}+\mathbf{H}_{\gamma \in \mathbb{N}^{*}, \mathbb{N} \subseteq \Gamma} B(\gamma) .
$$

For the sequence $s^{(2)}$, since $v\left(a_{n}^{(2)}\right)=(1, n)$ is strictly increasing as n increases, $x_{0}^{(2)}=0$ is a pseudo-limit of $s^{(2)}$ in M as well as in N. So the set of pseudo-limits in M is

$$
x_{0}^{(2)}+B r_{M}\left(s^{(2)}\right)=\coprod_{\gamma \in \mathbb{\mathbb { N } ^ { * } * \mathbb { N } \subseteq \Gamma}} B(\gamma) .
$$

The set of pseudo-limits in N is

$$
x_{0}^{(2)}+B r_{N}\left(s^{(2)}\right)=\mathbf{H}_{\gamma \in \mathbb{N}^{*} \cdot \mathbb{N} \subseteq \Gamma} B(\gamma)
$$

For the sequence $s^{(3)}$, since $v\left(a_{n}^{(3)}\right)=(n, n)$ is strictly increasing as n increases, $x_{0}^{(3)}=0$ is a pseudo-limit of $s^{(3)}$ in M as well as in N. So the set of pseudo-limits in M as well as in N is

$$
x_{0}^{(3)}+B r_{M}\left(s^{(3)}\right)=\{0\}=x_{0}^{(3)}+B r_{N}\left(s^{(3)}\right)
$$

