Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 14 - Lösung

1. Consider a system of valued \mathbb{R} -vector spaces $S = [\mathbb{Q}, \{B(q); q \in \mathbb{Q}\}]$ with $B(q) \simeq$ \mathbb{R} for any $q \in \mathbb{Q}$, the corresponding Hahn sum $\coprod B(\gamma)$ and an automorphism $\overline{\gamma \in \Gamma}$

 $\sigma: \mathbb{Q} \to \mathbb{Q}$ of the ordered set (\mathbb{Q}, \leq) . We consider the map

$$\tilde{\sigma}: \coprod_{\gamma \in \Gamma} B(\gamma) \to \coprod_{\gamma \in \Gamma} B(\gamma)$$

such that $\tilde{\sigma}(s)(q) := s(\sigma(q))$ for any $s \in \prod_{\gamma \in \Gamma} B(\gamma)$ and any $q \in \mathbb{Q}$. Given any $s_1, s_2 \in \prod_{\gamma \in \Gamma} B(\gamma)$, and $r_1, r_2 \in \mathbb{R}$, then for any $q \in \mathbb{Q}$, we have:

$$\begin{aligned} \tilde{\sigma}(r_1 s_1 + r_2 s_2)(q) &:= (r_1 s_1 + r_2 s_2)(\sigma(q)) \\ &= r_1 s_1(\sigma(q)) + r_2 s_2(\sigma(q)) \\ &= r_1 \tilde{\sigma}(s_1)(q) + r_2 \tilde{\sigma}(s_2)(q) \end{aligned}$$

Moreover, the following map is the functional inverse $\tilde{\sigma}^{-1}$ of $\tilde{\sigma}$:

$$\tilde{\sigma}^{-1}: \coprod_{\gamma \in \Gamma} B(\gamma) \to \coprod_{\gamma \in \Gamma} B(\gamma)$$

such that $\tilde{\sigma}^{-1}(s)(q) := s(\sigma^{-1}(q))$ for any $s \in \coprod_{\gamma \in \Gamma} B(\gamma)$ and any $q \in \mathbb{Q}$, where σ^{-1}
is the functional inverse of the automorphism σ . Thus $\tilde{\sigma}$ is bijective.

Consider $s \in \prod_{\gamma \in \Gamma} B(\gamma)$. We have $v(\tilde{\sigma}(s)) = \min\{ \text{support } \tilde{\sigma}(s) \}$ $= \min\{q \in \mathbb{Q} \mid \tilde{\sigma}(s)(q) \neq 0 \}$ $= \sigma \min\{q \in \mathbb{Q} \mid s(\sigma(q)) \neq 0 \}$ $= \min\{\sigma^{-1}(q') \in \mathbb{Q} \mid s(q') \neq 0 \}$ $= \sigma^{-1}(\min\{\text{support } s\})$ $= \sigma^{-1}(v(s))$

Since $\sigma^{-1} : \mathbb{Q} \to \mathbb{Q}$ is an automorphism of the ordered set \mathbb{Q} , we get that $\tilde{\sigma}$ is value preserving and therefore is an automorphism of valued vector spaces.

2. **Definition 0.1** Let $(G, +, \leq)$ be an ordered abelian group. A subgroup $C \subset G$ is said to be convex if for any $c_1, c_2 \in C$ and for any $x \in G$ such that $c_1 \leq x \leq c_2$, then $x \in C$.

(a) Let $(G, +, \leq)$ be an ordered abelian group, and C_1, C_2 be two convex subgroups. Suppose for instance that there exists $c_1 \in C_1 \setminus C_2$. Since C_2 is convex, then either $c_1 < C_2$ or $C_2 < c_1$. Since G is an ordered abelian group, it implies that $c_1 < C_2 < -c_1$ or respectively $-c_1 < C_2 < c_1$. But since C_1 is convex, for any $c_2 \in C_2$, the inequalities $-c_1 < c_2 < c_1$ imply that $c_2 \in C_1$. Thus $C_2 \subseteq C_1$. The group G itself as well as the trivial group {0} are clearly convex subgroups of G.

Consider two convex subgroups C_1 , C_2 of G. We know that either $C_1 \subseteq C_2$, or $C_2 \subseteq C_1$. Suppose for instance that $C_2 \subseteq C_1$. Then $C_1 \cap C_2 = C_2$ and $C_1 \cup C_2 = C_1$ which are convex subgroups of G.

(b) Given a convex subgroup *C* of an ordered abelian group $(G, +, \le)$, we define on the group (G/C, +) a relation \le by

for any $x, y \in G$, $x \le y \Rightarrow x + C \le y + C$.

The fact that (G/C,+) is an abelian group follows directly from the fact that the relation

 $\forall x, y \in G, \ x \sim_C y \Leftrightarrow x - y \in C$

is a congruence relation, i.e. an equivalence relation compatible with the addition (if $x_1 \sim_C x_2$ and $y_1 \sim_C y_2$, then $x_1 + x_2 \sim_C y_1 + y_2$).

We notice that $x + C \le y + C$ implies that either $x + C = y + C \Leftrightarrow x - y \in C$, or $x + c_1 < y + c_2$ for any $c_1, c_2 \in C$. The fact that $(G/C, \le)$ is an ordered set follows directly from the definition of the ordering and the fact that (G, \le) is totally ordered (check the axioms of reflexivity, anti-symmetry and transitivity).

Concerning the fact that $(G/C, \le)$ is a totally ordered set, consider x + C and y + C in G/C. Then either $x - y \in C$ which implies that x + C = y + C, or we have $x + c_1 < y + c_2$ or $x + c_1 > y + c_2$ for any $c_1, c_2 \in C$ (since *C* is convex). In these last 2 cases, we have x < y or respectively x > y (since $0 \in C$ as a subgroup of

G) which implies that x + C < y + C, respectively x + C > y + C.

To show that $(G/C, +, \le)$ is an ordered abelian group, take any $x + C \le y + C$ and z + C in G/C. Then $x + C \le y + C$ implies that either $x + C = y + C \Leftrightarrow x - y \in C$, or x < y. So we have either (x + z) + C = (y + z) + C, or x + z < y + z in G. But this last inequality implies that $(x + z) + C \le (y + z) + C$ in G/C.

Definition 0.2 Given two ordered groups (G_1, \leq) and (G_2, \leq) , and a group morphism $h : (G_1, \leq) \rightarrow (G_2, \leq)$, we say that h is an order preserving morphism if for any $x, y \in G_1$, $x \leq y \Rightarrow h(x) \leq h(y)$.

(c) The canonical projection $\Pi : G \to G/C$ is a group morphism. Now, take $x \le y$ in G. This implies by definition of the ordering on G/C that $\Pi(x) = x + C \le y + C = \Pi(y)$ in G/C. The canonical projection is order preserving.

3. **Definition 0.3** • A sequence $s := (a_{\rho})_{\rho \in \Lambda}$ (Λ being a well-ordered set) in a valued vector space (V,v) is said to be **pseudo-Cauchy** if for any $\rho < \sigma < \tau$, we have $v(a_{\sigma} - a_{\rho}) < v(a_{\tau} - a_{\sigma})$.

• For any $\rho \in \Lambda$, we define $\gamma_{\rho} := v(a_{\rho+1} - a_{\rho})$. Then the sequence $(\gamma_{\rho})_{\rho \in \Lambda}$ is strictly increasing in Γ .

• If there exists $\rho_0 \in \Lambda$ such that for any $\rho \ge \rho_0$, $v(a_\rho) = v(a_{\rho_0})$, then we define this value to be the **ultimate value** of s: $Ult(s) := v(a_{\rho_0})$.

• An element $x \in V$ is said to be a **pseudo-limit** of a pseudo-Cauchy sequence $s := (a_{\rho})_{\rho \in \Lambda}$ if $v(x - a_{\rho}) = \gamma_{\rho}$ for any $\rho \in \Lambda$.

• The **breadth** of a pseudo-Cauchy sequence $s := (a_{\rho})_{\rho \in \Lambda}$ is by definition $Br(s) := \{y \in V \mid v(y) > \gamma_{\rho} \forall \rho\}.$

Consider the ordered set $\Gamma = \mathbb{N}.\mathbb{N}$ which has order type ω^2 (i.e. the set $\mathbb{N} \times \mathbb{N}$ endowed with the lexicographic order: see ÜA Blatt 13). Consider the system of ordered Q-vector spaces $S := [\Gamma, \{B(\gamma); \gamma \in \Gamma\})$ where $B(\gamma) = \mathbb{R}$ for any γ , and the corresponding Hahn sum $M := \coprod_{\gamma \in \Gamma} B(\gamma)$ and Hahn product $N := \mathbf{H}_{\gamma \in \Gamma} B(\gamma)$

endowed as usual with the valuation $v := v_{\min}$. We define the following sequences in *M*:

• $s^{(1)} := (a_n^{(1)})_{n \in \mathbb{N}^*}$ where for any $(k,l) \in \Gamma$, $a_n^{(1)}(k,l) := \begin{vmatrix} l^k & \text{if } k \le n, l \le n \\ 0 & \text{if not} \end{vmatrix}$

• $s^{(2)} := (a_n^{(2)})_{n \in \mathbb{N}^*}$ where for any $(k,l) \in \Gamma$, $a_n^{(2)}(k,l) := \begin{vmatrix} n^k & \text{if } k \le n, l = n \\ 0 & \text{if not} \end{vmatrix}$

• $s^{(3)} := (a_n^{(3)})_{n \in \mathbb{N}^*}$ where for any $(k,l) \in \Gamma$, $a_n^{(3)}(k,l) := \begin{vmatrix} n^n & \text{if } k = l = n \\ 0 & \text{if not} \end{vmatrix}$ (a) For any $p < q \in \mathbb{N}^*$, we have

for any
$$(k,l) \in \Gamma$$
, $a_q^{(1)}(k,l) - a_p^{(1)}(k,l) =$
 $\begin{vmatrix} l^k & \text{if } (k \le p \text{ and } p+1 \le l \le q) \text{ or } (p+1 \le k \le q \text{ and } l \le q) \\ 0 & \text{if not.} \end{vmatrix}$

So, for any n , we compute

$$v(a_p^{(1)}-a_n^{(1)})=(1,n+1)<(1,p+1)=v(a_q^{(1)}-a_p^{(1)})$$

The sequence $s^{(1)}$ is pseudo-Cauchy. Moreover, we have $\gamma_n^{(1)} = (1, n + 1)$.

For any $p < q \in \mathbb{N}^*$, we have

for any
$$(k,l) \in \Gamma$$
, $a_q^{(3)}(k,l) - a_p^{(3)}(k,l) = \begin{vmatrix} -p^k & \text{if } k \le p \text{ and } l = p \\ q^k & \text{if } k \le q \text{ and } l = q \\ 0 & \text{if not.} \end{vmatrix}$

So, for any n , we compute

$$v(a_p^{(2)} - a_n^{(2)}) = (1,n) < (1,p) = v(a_q^{(2)} - a_p^{(2)})$$

The sequence $s^{(2)}$ is pseudo-Cauchy. Moreover, we have $\gamma_n^{(2)} = (1,n)$.

For any $p < q \in \mathbb{N}^*$, we have

for any
$$(k,l) \in \Gamma$$
, $a_q^{(3)}(k,l) - a_p^{(3)}(k,l) = \begin{vmatrix} -p^p & \text{si } k = l = p \\ q^q & \text{si } k = l = q \\ 0 & \text{sinon.} \end{vmatrix}$

So, for any n , we compute

$$(a_p^{(3)} - a_n^{(3)}) = (n,n) < (p,p) = v(a_q^{(3)} - a_p^{(3)}).$$

The sequence $s^{(3)}$ is pseudo-Cauchy. Moreover, we have $\gamma_n^{(1)} = (n,n)$.

(b) The value $Ult(s^{(i)})$ is only defined in the case i = 1, and we have $Ult(s^{(1)}) = v(a_1^{(1)}) = (1,1)$.

We also have in *M*:

•
$$Br_M(s^{(1)}) = \prod_{\gamma \in \mathbb{N}^*, \mathbb{N} \subseteq \Gamma} B(\gamma)$$

• $Br_M(s^{(2)}) = \prod_{\gamma \in \mathbb{N}^*, \mathbb{N} \subseteq \Gamma} B(\gamma)$
• $Br_M(s^{(3)}) = \{0\}.$

and in N:

•
$$Br_N(s^{(1)}) = \mathbf{H}_{\gamma \in \mathbb{N}^*.\mathbb{N} \subseteq \Gamma} B(\gamma)$$

• $Br_N(s^{(2)}) = \mathbf{H}_{\gamma \in \mathbb{N}^*.\mathbb{N} \subseteq \Gamma} B(\gamma)$
• $Br_N(s^{(3)}) = \{0\}.$

(c) Given a pseudo-Cauchy sequence $s := (a_{\rho})_{\rho \in \Lambda}$ and two pseudo-limits x and y, we have $x - y \in Br(s)$. So, in order to obtain all the pseudo-limits of a given pseudo-Cauchy sequence, it suffices to know one particular pseudo-limit x_0 and the breadth Br(s) of the sequence.

For the sequence $s^{(1)}$, a pseudo-limit $x_0^{(1)}$ has to contain (1,n) for all $n \in \mathbb{N}$ in its support (otherwise we would not have $v(x_0^{(1)} - a_n^{(1)}) = \gamma_n = (1, n + 1)$). Thus it cannot be an element of M. So the set of pseudo-limits of $s^{(1)}$ in M is empty. A pseudo-limit in N is given for instance by

$$x_0^{(1)}(k,l) := \begin{vmatrix} l & \text{if } k = 1, l \in \mathbb{N} \\ 0 & \text{if not} \end{vmatrix}$$

Thus the set of all pseudo-limits of $s^{(1)}$ in N is given by

$$x^{(1)} + Br_N(s^{(1)}) = x^{(1)} + \mathbf{H}_{\gamma \in \mathbb{N}^*.\mathbb{N} \subsetneq \Gamma} B(\gamma).$$

For the sequence $s^{(2)}$, since $v(a_n^{(2)}) = (1,n)$ is strictly increasing as *n* increases, $x_0^{(2)} = 0$ is a pseudo-limit of $s^{(2)}$ in *M* as well as in *N*. So the set of pseudo-limits in *M* is

$$x_0^{(2)}+Br_M(s^{(2)})=\coprod_{\gamma\in\mathbb{N}^*.\mathbb{N}\subsetneq\Gamma}B(\gamma).$$

The set of pseudo-limits in N is

$$x_0^{(2)} + Br_N(s^{(2)}) = \mathbf{H}_{\gamma \in \mathbb{N}^* . \mathbb{N} \subsetneq \Gamma} B(\gamma).$$

For the sequence $s^{(3)}$, since $v(a_n^{(3)}) = (n,n)$ is strictly increasing as *n* increases, $x_0^{(3)} = 0$ is a pseudo-limit of $s^{(3)}$ in *M* as well as in *N*. So the set of pseudo-limits in *M* as well as in *N* is

$$x_0^{(3)} + Br_M(s^{(3)}) = \{0\} = x_0^{(3)} + Br_N(s^{(3)})$$