Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 14

These exercises will be collected Tuesday 9 February in the mailbox number 15 of the Mathematics department.

- 1. Consider a system of valued \mathbb{R} -vector spaces $S = [\mathbb{Q}, \{B(q); q \in \mathbb{Q}\}]$ with $B(q) \simeq \mathbb{R}$ for any $q \in \mathbb{Q}$, the corresponding Hahn sum $\coprod_{\gamma \in \Gamma} B(\gamma)$ and an automorphism
 - $\sigma:\mathbb{Q}\to\mathbb{Q}$ of the ordered set (\mathbb{Q},\leq) . Then show that the map

$$\tilde{\sigma}: \coprod_{\gamma \in \Gamma} B(\gamma) \to \coprod_{\gamma \in \Gamma} B(\gamma)$$

such that $\tilde{\sigma}(s)(q) := s(\sigma(q))$ for any $s \in \prod_{\gamma \in \Gamma} B(\gamma)$ and any $q \in \mathbb{Q}$, is an automorphism of valued vector encodes

phism of valued vector spaces.

2. **Definition 0.1** Let $(G, +, \leq)$ be an ordered abelian group. A subgroup $C \subset G$ is said to be convex if for any $c_1, c_2 \in C$ and for any $x \in G$ such that $c_1 \leq x \leq c_2$, then $x \in C$.

(a) Let $(G, +, \leq)$ be an ordered abelian group. Show that the set of all convex subgroups of *G* is totally ordered by \subseteq , contains the trivial subgroup $\{0\} \subset G$ and *G*, and is stable under union and intersection.

(b) Given a convex subgroup *C* of an ordered abelian group $(G, +, \le)$, we define on the group (G/C, +) a induced relation \le by

for any $x, y \in G$, $x \le y \Rightarrow x + C \le y + C$.

Show that $(G/C, +, \leq)$ is an ordered abelian group.

Definition 0.2 Given two ordered groups (G_1, \leq) and (G_2, \leq) , and a group morphism $h : (G_1, \leq) \rightarrow (G_2, \leq)$, we say that h is an order preserving morphism if for any $x, y \in G_1$, $x \leq y \Rightarrow h(x) \leq h(y)$.

(c) With the same hypothesis as in Question (b), prove that the canonical projection $\Pi: G \to G/C$ is an order preserving morphism.

3. **Definition 0.3** • A sequence $s := (a_{\rho})_{\rho \in \Lambda}$ (Λ being a well-ordered set) in a valued vector space (V,v) is said to be **pseudo-Cauchy** if for any $\rho < \sigma < \tau$, we have $v(a_{\sigma} - a_{\rho}) < v(a_{\tau} - a_{\sigma})$.

• For any $\rho \in \Lambda$, we define $\gamma_{\rho} := v(a_{\rho+1} - a_{\rho})$. Then the sequence $(\gamma_{\rho})_{\rho \in \Lambda}$ is strictly increasing in Γ .

• If there exists $\rho_0 \in \Lambda$ such that for any $\rho \ge \rho_0$, $v(a_\rho) = v(a_{\rho_0})$, then we define this value to be the **ultimate value** of s: $Ult(s) := v(a_{\rho_0})$.

• An element $x \in V$ is said to be a **pseudo-limit** of a pseudo-Cauchy sequence $s := (a_{\rho})_{\rho \in \Lambda}$ if $v(x - a_{\rho}) = \gamma_{\rho}$ for any $\rho \in \Lambda$.

• The **breadth** of a pseudo-Cauchy sequence $s := (a_{\rho})_{\rho \in \Lambda}$ is by definition $Br(s) := \{y \in V \mid v(y) > \gamma_{\rho} \forall \rho\}.$

Consider the ordered set $\Gamma = \mathbb{N}.\mathbb{N}$ which has order type ω^2 (i.e. the set $\mathbb{N} \times \mathbb{N}$ endowed with the lexicographic order: see ÜA Blatt 13). Consider the system of ordered \mathbb{Q} -vector spaces $S := [\Gamma, \{B(\gamma); \gamma \in \Gamma\})$ where $B(\gamma) = \mathbb{R}$ for any γ , and the corresponding Hahn sum $M := \coprod_{\gamma \in \Gamma} B(\gamma)$ and Hahn product $N := \mathbf{H}_{\gamma \in \Gamma} B(\gamma)$

endowed as usual with the valuation $v := v_{\min}$. We define the following sequences in *M*:

- $s^{(1)} := (a_n^{(1)})_{n \in \mathbb{N}^*}$ where for any $(k,l) \in \Gamma$, $a_n^{(1)}(k,l) := \begin{vmatrix} l^k & \text{if } k \le n, l \le n \\ 0 & \text{if not} \end{vmatrix}$ • $s^{(2)} := (a_n^{(2)})_{n \in \mathbb{N}^*}$ where for any $(k,l) \in \Gamma$, $a_n^{(2)}(k,l) := \begin{vmatrix} n^k & \text{if } k \le n, l = n \\ 0 & \text{if not} \end{vmatrix}$
- $s^{(3)} := (a_n^{(3)})_{n \in \mathbb{N}^*}$ where for any $(k,l) \in \Gamma$, $a_n^{(3)}(k,l) := \begin{vmatrix} n^n & \text{if } k = l = n \\ 0 & \text{if not} \end{vmatrix}$

(a) Prove that these sequences are pseudo-Cauchy and compute the corresponding $\gamma_n^{(i)} := v(a_{n+1}^{(i)} - a_n^{(i)}), i = 1,2,3.$

(b) Compute the corresponding $Ult(s^{(i)})$ (whenever it is defined) and $Br(s^{(i)})$, i = 1,2,3 in *M* as well as in *N*.

(c) For each of these 3 sequences, describe the set of all pseudo-limits in M and in N.