Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 14

These exercises will be collected Tuesday 9 February in the mailbox number 15 of the Mathematics department.

1. Consider a system of valued \mathbb{R}-vector spaces $S=[\mathbb{Q},\{B(q) ; q \in \mathbb{Q}\}]$ with $B(q) \simeq$ \mathbb{R} for any $q \in \mathbb{Q}$, the corresponding Hahn sum $B(\gamma)$ and an automorphism $\sigma: \mathbb{Q} \rightarrow \mathbb{Q}$ of the ordered set (\mathbb{Q}, \leq). Then show that the map

$$
\tilde{\sigma}: \coprod_{\gamma \in \Gamma} B(\gamma) \rightarrow \coprod_{\gamma \in \Gamma} B(\gamma)
$$

such that $\tilde{\sigma}(s)(q):=s(\sigma(q))$ for any $s \in \coprod_{\gamma \in \Gamma} B(\gamma)$ and any $q \in \mathbb{Q}$, is an automorphism of valued vector spaces.
2. Definition 0.1 Let $(G,+, \leq)$ be an ordered abelian group. A subgroup $C \subset G$ is said to be convex if for any $c_{1}, c_{2} \in C$ and for any $x \in G$ such that $c_{1} \leq x \leq c_{2}$, then $x \in C$.
(a) Let $(G,+, \leq)$ be an ordered abelian group. Show that the set of all convex subgroups of G is totally ordered by \subseteq, contains the trivial subgroup $\{0\} \subset G$ and G, and is stable under union and intersection.
(b) Given a convex subgroup C of an ordered abelian group $(G,+, \leq)$, we define on the group $(G / C,+)$ a induced relation \leq by

$$
\text { for any } x, y \in G, x \leq y \Rightarrow x+C \leq y+C .
$$

Show that $(G / C,+, \leq)$ is an ordered abelian group.

Definition 0.2 Given two ordered groups $\left(G_{1}, \leq\right)$ and $\left(G_{2}, \leq\right)$, and a group morphism $h:\left(G_{1}, \leq\right) \rightarrow\left(G_{2}, \leq\right)$, we say that h is an order preserving morphism if for any $x, y \in G_{1}, x \leq y \Rightarrow h(x) \leq h(y)$.
(c) With the same hypothesis as in Question (b), prove that the canonical projection $\Pi: G \rightarrow G / C$ is an order preserving morphism.
3. Definition 0.3 • A sequence $s:=\left(a_{\rho}\right)_{\rho \in \Lambda}$ (Λ being a well-ordered set) in a valued vector space (V, v) is said to be pseudo-Cauchy if for any $\rho<\sigma<\tau$, we have $v\left(a_{\sigma}-a_{\rho}\right)<v\left(a_{\tau}-a_{\sigma}\right)$.

- For any $\rho \in \Lambda$, we define $\gamma_{\rho}:=v\left(a_{\rho+1}-a_{\rho}\right)$. Then the sequence $\left(\gamma_{\rho}\right)_{\rho \in \Lambda}$ is strictly increasing in Γ.
- If there exists $\rho_{0} \in \Lambda$ such that for any $\rho \geq \rho_{0}, v\left(a_{\rho}\right)=v\left(a_{\rho_{0}}\right)$, then we define this value to be the ultimate value of $s: \operatorname{Ult}(s):=v\left(a_{\rho_{0}}\right)$.
- An element $x \in V$ is said to be a pseudo-limit of a pseudo-Cauchy sequence $s:=\left(a_{\rho}\right)_{\rho \in \Lambda}$ if $v\left(x-a_{\rho}\right)=\gamma_{\rho}$ for any $\rho \in \Lambda$.
- The breadth of a pseudo-Cauchy sequence $s:=\left(a_{\rho}\right)_{\rho \in \Lambda}$ is by definition $\operatorname{Br}(s):=$ $\left\{y \in V \mid v(y)>\gamma_{\rho} \forall \rho\right\}$.

Consider the ordered set $\Gamma=\mathbb{N} . \mathbb{N}$ which has order type ω^{2} (i.e. the set $\mathbb{N} \times \mathbb{N}$ endowed with the lexicographic order: see ÜA Blatt 13). Consider the system of ordered \mathbb{Q}-vector spaces $S:=[\Gamma,\{B(\gamma) ; \gamma \in \Gamma\})$ where $B(\gamma)=\mathbb{R}$ for any γ, and the corresponding Hahn sum $M:=\coprod_{\gamma \in \Gamma} B(\gamma)$ and Hahn product $N:=\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$ endowed as usual with the valuation $v:=v_{\text {min }}$.
We define the following sequences in M :

- $s^{(1)}:=\left(a_{n}^{(1)}\right)_{n \in \mathbb{N}^{*}}$
where for any $(k, l) \in \Gamma, a_{n}^{(1)}(k, l) \quad:=\left\lvert\, \begin{aligned} & l^{k} \quad \text { if } \quad k \leq n, l \leq n \\ & 0\end{aligned} \quad\right.$ if not \quad.
- $s^{(2)}:=\left(a_{n}^{(2)}\right)_{n \in \mathbb{N}^{*}}$
where for any $(k, l) \in \Gamma, a_{n}^{(2)}(k, l) \quad:=\left\lvert\, \begin{aligned} & n^{k} \quad \text { if } \quad k \leq n, l=n \\ & 0\end{aligned} \quad\right.$ if not \quad.
- $s^{(3)}:=\left(a_{n}^{(3)}\right)_{n \in \mathbb{N}^{*}}$
where for any $(k, l) \in \Gamma, a_{n}^{(3)}(k, l) \quad:=\left\lvert\, \begin{aligned} & n^{n} \\ & 0\end{aligned} \quad\right.$ if $\quad k=l=n$
(a) Prove that these sequences are pseudo-Cauchy and compute the correspon$\operatorname{ding} \gamma_{n}^{(i)}:=v\left(a_{n+1}^{(i)}-a_{n}^{(i)}\right), i=1,2,3$.
(b) Compute the correponding $\operatorname{Ult}\left(s^{(i)}\right)$ (whenever it is defined) and $\operatorname{Br}\left(s^{(i)}\right)$, $i=1,2,3$ in M as well as in N.
(c) For each of these 3 sequences, describe the set of all pseudo-limits in M and in N.

