Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 15

1. **Definition 0.1** Let $(G, +, \leq)$ be an ordered abelian group. For any $x \in G$, $x \neq 0$, we define

 $C_x := \bigcap \{C \text{ convex subgroup of } G, x \in C\}.$

This is the smallest convex subgroup of G which contains x. We also denote

 $D_x := \bigcup \{C \text{ convex subgroup of } G, x \notin C \}.$

Prove the following proposition:

Proposition 0.2 (a) D_x is the biggest convex subgroup of G which does not contain x.

(b) The extension from D_x to C_x is a jump (= Sprung), i.e. for any $D_x \subseteq C \subseteq C_x$ with C convex, then $C = D_x$ or $C = C_x$. We write $D_x \prec C_x$.

(c) Consequently, the ordered abelian group $B_x := C_x/D_x$ has no proper non trivial convex subgroup.

2. **Definition 0.3** An ordered abelian group $(A, +, \leq)$ is said to be **archimedian** if for any $a_1, a_2 \in A$ with $a_1 \neq 0$ and $a_2 \neq 0$, there exists $n \in \mathbb{N}$ such that $n|a_1| \geq |a_2|$ and $n|a_2| \geq |a_1|$ (where $|a| := \max\{a; -a\}$).

Prove the following proposition:

Proposition 0.4 An ordered abelian group $(A, +, \leq)$ is archimedian if and only if it has no non trivial proper convex subgroup.

3. **Definition 0.5** • *Given an ordered abelian group* $(G, +, \leq)$ *, two nonzero elements x,y* \in *G are said to be archimedian equivalent, denoted by x* \sim^+ *y, if there exists n* $\in \mathbb{N}$ *such that n*|*x*| \geq |*y*| *and n*|*y*| \geq |*x*|*.*

• Otherwise, given two nonzero elements $x, y \in G$, if we have n|x| < |y| for any $n \in \mathbb{N}$, then we denote $x \ll y$.

Prove the following proposition:

Proposition 0.6 The relation \sim^+ is compatible with the relation $<<^+$ in the following sense: for any nonzero $x, y, z \in G$,

if $x <<^+ y$ *and* $z \sim^+ x$, *then* $z <<^+ y$; *if* $x <<^+ y$ *and* $z \sim^+ y$, *then* $x <<^+ z$.

4. Given an ordered abelian group $(G, +, \leq)$, we consider the set $\Gamma := G \setminus \{0\}/ \sim^+$ of its archimedian equivalence classes. We define a relation on Γ by, for any nonzero $x, y \in G$,

$$[y] <_{\Gamma} [x] \Leftrightarrow x <<^{+} y.$$

Prove the following proposition:

Proposition 0.7 (a) The relation \leq_{Γ} is a total ordering on Γ . The ordered set ($\Gamma := G \setminus \{0\}/\sim^+, \leq_{\Gamma}$) is called the **rank** of G, denoted by Rank(G).

(b) For any nonzero $x \in G$, denote its archimedian equivalence class [x] := v(x), and denote $[0] := \infty$. The map

 $v: G \to \Gamma \cup \{\infty\}$ $x \mapsto v(x)$

is a valuation, which is called the natural valuation of G.

Definition 0.8 Let (Γ, \leq) be an ordered set and $\{B_{\gamma}, \gamma \in \Gamma\}$ be a family of archimedean abelian groups (consequently $B_{\gamma} \hookrightarrow (\mathbb{R}, +, \leq)$ by Hölder's theorem).

The ordered Hahn sum is defined to be the Hahn sum $G = \prod_{\gamma \in \Gamma} B_{\gamma}$ (i.e. the direct sum from the B_{γ} 's) endowed with the lexicographic ordering. Similarly, we define the ordered Hahn product $\vec{H}_{\gamma \in \Gamma} B_{\gamma}$.

(c) Given
$$x \in G$$
, $x \neq 0$, we put $v(x) := \gamma \in \Gamma$. Then we have

$$G^{\gamma} := \{a \in G \mid v(a) \ge \gamma\} = C_x;$$

$$G_{\gamma} := \{a \in G \mid v(a) > \gamma\} = D_x.$$

and consequently

$$G^{\gamma}/G_{\gamma} =: B(\gamma) = B_x := C_x/D_x$$

is an archimedean group.

(Hint: prove that for any nonzero $x, y \in G$, we have $x \sim^+ y \Leftrightarrow C_x = C_y$ and $D_x = D_y$.)