Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 2

These exercises will be collected Tuesday 3 November either in one of the mailboxes of the Mathematics department, or during the break of the lecture.

1. **Definition 0.1** An ordered field (K, \leq) is:

(*i*) *Dedekind complete (vollständig)*, *if for any pair of non empty subsets L and U of K such that* $L \leq U$ (*i.e.* $\lambda \leq \mu$ *for any* $\lambda \in L$ *and any* $\mu \in U$), *there exists* $\alpha \in K$ *such that* $L \leq \alpha \leq U$; (*ii*) *archimedean if for any* $\alpha \in K$, *there exists* $n \in \mathbb{N}$ *such that* $\alpha \leq n$;

(iii) **complete** if any Cauchy sequence converges.

(a) Let (K, \leq) be an ordered field. Show that *K* is Dedekind complete if and only if it is archimedean and complete.

(b) Let (K, \leq) be an archimedean ordered field. Show that \mathbb{Q} is **dense** in (K, \leq) , i.e. $\forall \alpha < \beta \in K, \exists r \in \mathbb{Q}, \alpha < r < \beta$.

(c) Let (K, \leq) be an archimedean ordered field. Let $\rho : K \to \mathbb{R}$ be the map which to each element $\alpha \in K$ associates the uniquely determined real number $\rho(\alpha) \in \mathbb{R}$ such that $U_{\alpha} \leq \rho(\alpha) \leq O_{\alpha}$, where:

$$U_{\alpha} := \{r \in \mathbb{Q} \mid r < \alpha\} \text{ and } O_{\alpha} := \{r \in \mathbb{Q} \mid \alpha \leq r\}.$$

Show that:

(i) *ρ* is a ring homomorphism, and therefore a field embedding;
(ii) for any *α*,*β* ∈ *K*, *α* ≤ *β* if and only if *ρ*(*α*) ≤ *ρ*(*β*). Therefore *ρ* preserves the ordering.

This completes the proof of Hölder's theorem.

(d) Let (K, \leq) be a Dedekind complete ordered field. Deduce that *K* is isomorphic to \mathbb{R} as ordered field (Hint: recall that \mathbb{R} is complete).

Therefore, (\mathbb{R}, \leq) is the unique Dedekind complete ordered field up to isomorphism.

2. **Definition 0.2** A cone of a field K is a subset P of K such that:

(i) $\alpha, \beta \in P \Rightarrow \alpha + \beta \in P$; (ii) $\alpha, \beta \in P \Rightarrow \alpha, \beta \in P$; (iii) $\alpha \in K \Rightarrow \alpha^2 \in P$. The cone is said to be **proper** if in addition: (iv) $-1 \notin P$.

(a) Under conditions (i), (ii) and (iii), show that P is proper if and only if:

(iv)'
$$P \cap -P = \{0\}.$$

(b) Given an ordered field (K, \leq) , consider its subset $P = \{\alpha \in K \mid \alpha \geq 0\}$ of non negative elements. Show that this a proper cone satisfying: (v) $P \cup -P = K$ (where $-P := \{\alpha \in K \mid -\alpha \in P\}$).

The set $P = \{\alpha \in K \mid \alpha \ge 0\}$ is called the **positive cone** of *K*.

(c) Show that, conversely, if *P* is a proper cone of a field *K* satisfying (v), then *K* is ordered by

$$\alpha \leq \beta \Leftrightarrow \beta - \alpha \in P$$

(d) Deduce that there is a bijective correspondance between orderings of K and positives cones of K.

3. Notation 0.3 The set of sums of squares of elements of a field K is denoted by $\sum K^2$.

(a) Show that the set $\sum K^2$ is a cone, and is contained in any cone of *F*.

(b) A field K is said to be **real** if it admits at least one order. Show that, if K is real, then

$$-1 \notin \sum K^2.$$

(c) Show that if a field K is algebraically closed, then it is not real.

(d) Show that if (K,P) is an ordered field, F another field, $\varphi : F \to K$ a field homomorphism, then $Q := \varphi^{-1}(P)$ is an ordering of F. In this case, we say that P is an **extension** of Q (where Q is the **pullback** of P).

(e) Show that if *P* and *Q* are orderings of a field *K* with $P \subset Q$ then P = Q.

(f) In particular, show that if $P = \sum K^2$ happens to be a positive cone of K, then it is the only ordering of K.

(g) As examples, consider the fields $\mathbb R$ and $\mathbb Q$ and show that they admit a unique ordering.