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Theorem 0.1 (Puiseux theorem) The set P is a real closed field.

1. Firstly, we show that K is a field.

Let A(X) =

∞∑
i=m

aiXi and B(X) =

∞∑
i=n

biXi be two elements ofK , with for instance

m ≤ n. We have:

- stability by addition: A(X)+B(X) =

n∑
i=m

aiXi +

∞∑
i=n

(ai +bi)Xi is an element ofK ;

- the addition is associative and commutative: this follows directly from the pre-
ceding formula and the commutativity and associativity of the coefficients that
are real numbers;

- the neutral element is 0: we have 0 + A(X) = A(X) + 0 = A(X) in K ;

- existence of an additive inverse: the element −A(X) =

∞∑
i=m

−aiXi is the inverse

of A(X) in K ;

- stability by multiplication: note that for any i ≥ m + n, the number of couples
of integers ( j,k) such that j ≥ m,k ≥ n and j + k = i, is finite. Then A(X).B(X) =
∞∑

i=m+n

∑
j+k=i

a jbkXi is well defined and is an element of K∗;

- the multiplication is associative and commutative: this follows directly from the
preceding formula and the commutativity and associativity of the coefficients
that are real numbers;

- the neutral element is 1: we have 1.A(X) = A(X).1 = A(X) in K∗;
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- existence of the multiplicative inverse: suppose A(X) , 0. Factorizing by the
term with lowest degree amXm, we get A(X) = amXm(1 + U(X)) where U(X) ∈
R[[X]] such that U(0) = 0. Then we define

1
A(X)

:= a−1
m X−m 1

1 + U(X)

= a−1
m X−m

∞∑
k=0

(−1)kU(X)k by Euler’s formula

Since U(0) = 0, we can factor X in U(X). So for any k, U(X)k has order (=
least exponent) at least k. So by a straightforward induction, one shows that
only finitely many terms U(X)k give a contribution to a given power Xi. There-

fore
∞∑

k=0

(−1)kU(X)k = 1 −U(X) + U(X)2 − · · · is well-defined and is an element

of R[[X]];

- the set T := K≥0 =

A(X) =

∞∑
i=m

aiXi | am ≥ 0

 ∪ {0} is a positive cone: provi-

ded A(X),B(X) ∈ P, we have
• A(X) + B(X) = amXm + · · · ∈ T ,
• A(X).B(X) = ambnXm+n + · · · ∈ T ,
• for any A(X) ∈ K , A(X)2 = a2

mX2m + · · · ∈ T .
So T is a preordering.
Moreover, −1 < T . So T is a proper preordering.

Finally, given any non zero A(X) =

∞∑
i=m

aiXi ∈ K , either am > 0 and so A(X) ∈ T ,

or am < 0 and so −A(X) ∈ T . Thus T is an ordering in K .

2. Let A(X) =

∞∑
i=m

aiXi/N1 and B(X) =

∞∑
i=n

biXi/N2 be two Puiseux series. Writing

i/N1 = iN2/(N1N2) and i/N2 = iN1/(N1N2), we rewrite A(X) and B(X) as series
with exponents that have same denominator (N1N2). Then, by the change of va-
riable X1/(N1N2) = ξ, we have A(X) = Ã(ξ) and B(X) = B̃(ξ) which are elements
of K (here the quotient field of R[[ξ]]). Then the results of the preceding ques-
tion apply, making P into a field.

3. We consider a polynomial equation
(I) P(X,Y) = A0(X)Yn + A1(X)Yn−1 + · · · + An−1(X)Y + An(X) = 0

with coefficients in P. We denote by Ni the denominator of the exponents in Ai,
and N := lcm(Ni, i = 0, . . . ,n). We perform the change of variable X̃ := X1/N . A
Puiseux series Y(X) ∈ P is a solution of (I) if and only if Ỹ(X̃) := Y(X̃N) ∈ P is
a solution of

(II) P(X̃N ,Ỹ) = A0(X̃N)Ỹn + A1(X̃N)Ỹn−1 + · · · + An−1(X̃N)Ỹ + An(X̃N) = 0
⇔ P̃(X̃,Ỹ) = B0(X̃)Ỹn + B1(X̃)Ỹn−1 + · · · + Bn−1(X̃)Ỹ + Bn(X̃) = 0

which has coefficients B1(X̃) in K .
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Define mi to be the order of Bi and
k := max{l ∈ Z | nl + m0 ≤ (n − i)l + mi, ∀i = 1, . . . ,n}.

Then putting Ỹ = X̃kŶ and dividing by Xnk+m0 , we get that Ỹ is solution of (II)
in P if and only if Ŷ is solution of

(III) P̂(X̃,Ŷ) = C0(X̃)Ŷn + C1(X̃)Ŷn−1 + · · · + Cn−1(X̃)Ŷ + Cn(X̃) = 0
with coefficients that are in R[[X]], in particular with C0(0) , 0 ⇔ C0(X̃) =

c0 + U(X) with U(0) = 0.
Finally, divide this equation by C0(X̃) and use the Euler formula as above to
conclude that this equation (III) is equivalent to an equation

(IV) Q(X̃,Ŷ) = Ŷn + D1(X̃)Ŷn−1 + · · · + Dn−1(X̃)Ŷ + Dn(X̃) = 0
defined by Q(X̃,Ŷ) which is a monic polynomial in Ŷ with coefficients Dk(X̃) in
R[[(X̃)]].

4. Since P(Y) and Q(Y) are relatively prime, by the cited lemma, we have:
1 = A0(Y)P(Y) + B0(Y)Q(Y).

for some polynomials A0(Y) and B0(Y).Thus we have
F(Y) = F(Y)A0(Y)P(Y) + F(Y)B0(Y)Q(Y).

Then using the Euclidean division, we can write
F(Y)A0(Y) = C1(Y)Q(Y) + A(Y)
F(Y)B0(Y) = C2(Y)P(Y) + B(Y).

where the degree of A(Y), respectively B(Y), is strictly less than q = deg Q(Y),
respectively p = deg P(Y). Thus we have

F(Y) = [C1(Y) + C2(Y)]P(Y)Q(Y) + A(Y)P(Y) + B(Y)Q(Y).
Since deg(P(Y)Q(Y)) is p + q, which is bigger than deg F(Y), then we must have
C1(Y) + C2(Y) = 0.

5. Consider C1(X1, . . . ,Xn), . . . ,Cp(X1, . . . ,Xn) and D1(X1, . . . ,Xn), . . . ,Dq(X1, . . . ,Xn)
as in the cited lemma. We notice that for all i, j, Ci(a1, . . . ,an) and D j(a1, . . . ,an)
are well defined, where ak = Ak(0) for all k. Set the n-tuple A(X) = (A1(X), . . . ,An(X)).
Since for all k, Ak(X) = ak + Uk(X) with U(0) = 0, the expressions Ci(A(X)) and
D j(A(X)) are also well defined (using for instance multivariate Taylor expan-
sion). Then we can define:

P(X,Y) := Y p + C1(A(X))Y p−1 + · · · + Cp(An(X))
Q(X,Y) := Yq + D1(A(X))Y p−1 + · · · + Dq(An(X)).

6. (a) Consider A(X) =

∞∑
i=m

aiXi ∈ R[[X]] (thus m ≥ 0) with am > 0, and the

equation
Y2 − A(X) = 0.

with solutions Y(X) ∈ P. Applying the change of unknown Ỹ =
Y

Xm/2 , we equi-
valently get an equation

F(X,Ỹ) = Ỹ2 − (am + am+1X + · · · ) = 0
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for which F(0,Ỹ) = Ỹ2 − am = (Ỹ −
√

am)(Ỹ +
√

am) and the solutions Ỹ(X) ∈ P.
By Hensel’s lemma, there exist P(X,Ỹ) = Ỹ−B1(X) and Q(X,Ỹ) = Ỹ−C1(X) with
B1(X),C1(X) ∈ R[[X]] such that (Ỹ−B1(X))(Ỹ−C1(X)) = Ỹ2−(am +am+1X+· · · ).

So B1(X) = −C1(X) and B1(X)2 = C1(X)2 = am + am+1X + · · · =
A(X)
Xm . Say for

instance that B1(X) > 0. Then X1/2B1(X) =
√

A(X) ∈ P.
Note: we have B1(X) =

√
am + U1(X) with U1(0) = 0.

(b) We proceed by induction on p ∈ N where 2p + 1 = n.

For p = 0 ⇔ n = 2p + 1 = 1, we consider an equation Y − A1(X) = 0 that has a
unique solution Y(X) = A1(X) ∈ P.

For p > 0 ⇔ n = 2p + 1 > 1, we suppose that any poynomial equation over P
of odd degree less than or equal to 2p − 1 has a root in P. Then we consider a
polynomial equation

(I) F(X,Y) = Yn + A1(X)Yn−1 + · · · + An(X) = 0
of degree n = 2p + 1. We notice that F(0,Y) = Yn + an−kYk + · · · + an−lY l for
eventually some 1 ≤ k,l ≤ n and some coefficients ai ∈ R. Since R is real closed
and F(0,Y) has an odd degree, then F(0,Y) has at least one real root, say α, that
has some multiplicity r. There are two cases:

• either r < n, which means that F(0,Y) = (Y − α)rQ0(Y) with (Y − α)r and
Q0(Y) that are relatively primes. Then we apply Hensel’s lemma and get that
F(X,Y) = P(X,Y)Q(X,Y) for some P(X,Y),Q(X,Y) that are polynomials in Y
with coefficients that are formal series in X. Since deg F(X,Y) is odd, then either
deg P(X,Y) or deg Q(X,Y) is odd. Therefore we apply the induction hypothesis to
the one with odd degree and we get a root in P of F(X,Y).

• or r = n meaning that F(0,Y) = (Y −α)n. We perform the Tschirnhausen trans-

form Y(X) =: Y1(X)−
A1(X)

n
in the equation (I). After expansion, we equivalently

get an equation polynomial in Y1

(II) F1(X,Y1) = Yn
1 + B2(X)Yn−1

1 + · · · + Bn(X) = 0
which has coefficient B1(X) ≡ 0.

Then we set d := min
{

deg Bk(X)
k

| k = 2, . . . ,n
}

and we perform in (II) the

change of unknown Y1(X) =: XdY2(X). After dividing by Xnd, we get an equation
(III) F2(X,Y2) = Yn

2 + C2(X)Yn−1
2 + · · · + Cn(X) = 0

such that F2(0,Y2) = Yn
2 + c2Yn−1

2 + · · · + cn = 0 with some ck , 0. Thus this
equation splits into two relatively prime factors (it cannot be (Y − β)n since we
have the coefficient cn−1 = 0). Then we are back to the preceding case.

7. Criterion (iii) of Artin-Schreier’s theorem says that a field K is real closed if
and only if it is real, it has no proper algebraic extension of odd degree and
K∗ = (K∗)2 ∪ −(K∗)2. Equivalently, K is ordered, any polynomial equation of
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odd degree with coefficients in K has a root in K, and any positive element in K
has a square root (see Corollary 2 in the Lecture of the 03/11/09). That is what
we prove in question 3 (for the ordering) and in question 6, thanks to the changes
of variable described in question 3.
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