Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 3 - Lösung.

Theorem 0.1 (Puiseux theorem) The set \mathcal{P} is a real closed field.

1. Firstly, we show that \mathcal{K} is a field.

Let $A(X)=\sum_{i=m}^{\infty} a_{i} X^{i}$ and $B(X)=\sum_{i=n}^{\infty} b_{i} X^{i}$ be two elements of \mathcal{K}, with for instance $m \leq n$. We have:

- stability by addition: $A(X)+B(X)=\sum_{i=m}^{n} a_{i} X^{i}+\sum_{i=n}^{\infty}\left(a_{i}+b_{i}\right) X^{i}$ is an element of \mathcal{K};
- the addition is associative and commutative: this follows directly from the preceding formula and the commutativity and associativity of the coefficients that are real numbers;
- the neutral element is 0: we have $0+A(X)=A(X)+0=A(X)$ in \mathcal{K};
- existence of an additive inverse: the element $-A(X)=\sum_{i=m}^{\infty}-a_{i} X^{i}$ is the inverse of $A(X)$ in \mathcal{K};
- stability by multiplication: note that for any $i \geq m+n$, the number of couples of integers (j, k) such that $j \geq m, k \geq n$ and $j+k=i$, is finite. Then $A(X) \cdot B(X)=$ $\sum_{i=m+n}^{\infty} \sum_{j+k=i} a_{j} b_{k} X^{i}$ is well defined and is an element of \mathcal{K}^{*};
- the multiplication is associative and commutative: this follows directly from the preceding formula and the commutativity and associativity of the coefficients that are real numbers;
- the neutral element is 1 : we have $1 . A(X)=A(X) .1=A(X)$ in \mathcal{K}^{*};
- existence of the multiplicative inverse: suppose $A(X) \neq 0$. Factorizing by the term with lowest degree $a_{m} X^{m}$, we get $A(X)=a_{m} X^{m}(1+U(X))$ where $U(X) \in$ $\mathbb{R}[[X]]$ such that $U(0)=0$. Then we define

$$
\begin{aligned}
\frac{1}{A(X)} & :=a_{m}^{-1} X^{-m} \frac{1}{1+U(X)} \\
& =a_{m}^{-1} X^{-m} \sum_{k=0}^{\infty}(-1)^{k} U(X)^{k} \text { by Euler's formula }
\end{aligned}
$$

Since $U(0)=0$, we can factor X in $U(X)$. So for any $k, U(X)^{k}$ has order (= least exponent) at least k. So by a straightforward induction, one shows that only finitely many terms $U(X)^{k}$ give a contribution to a given power X^{i}. Therefore $\sum_{k=0}^{\infty}(-1)^{k} U(X)^{k}=1-U(X)+U(X)^{2}-\cdots$ is well-defined and is an element of $\mathbb{R}[[X]]$;

- the set $T:=\mathcal{K}_{\geq 0}=\left\{A(X)=\sum_{i=m}^{\infty} a_{i} X^{i} \mid a_{m} \geq 0\right\} \cup\{0\} \underline{\text { is a positive cone: provi- }}$ $\operatorname{ded} A(X), B(X) \in P$, we have
- $A(X)+B(X)=a_{m} X^{m}+\cdots \in T$,
- $A(X) \cdot B(X)=a_{m} b_{n} X^{m+n}+\cdots \in T$,
- for any $A(X) \in \mathcal{K}, A(X)^{2}=a_{m}^{2} X^{2 m}+\cdots \in T$.

So T is a preordering.
Moreover, $-1 \notin T$. So T is a proper preordering.
Finally, given any non zero $A(X)=\sum_{i=m}^{\infty} a_{i} X^{i} \in \mathcal{K}$, either $a_{m}>0$ and so $A(X) \in T$, or $a_{m}<0$ and so $-A(X) \in T$. Thus T is an ordering in \mathcal{K}.
2. Let $A(X)=\sum_{i=m}^{\infty} a_{i} X^{i / N_{1}}$ and $B(X)=\sum_{i=n}^{\infty} b_{i} X^{i / N_{2}}$ be two Puiseux series. Writing $i / N_{1}=i N_{2} /\left(N_{1} N_{2}\right)$ and $i / N_{2}=i N_{1} /\left(N_{1} N_{2}\right)$, we rewrite $A(X)$ and $B(X)$ as series with exponents that have same denominator $\left(N_{1} N_{2}\right)$. Then, by the change of variable $X^{1 /\left(N_{1} N_{2}\right)}=\xi$, we have $A(X)=\tilde{A}(\xi)$ and $B(X)=\tilde{B}(\xi)$ which are elements of \mathcal{K} (here the quotient field of $\mathbb{R}[[\xi]])$. Then the results of the preceding question apply, making \mathcal{P} into a field.
3. We consider a polynomial equation

$$
\text { (I) } \quad P(X, Y)=A_{0}(X) Y^{n}+A_{1}(X) Y^{n-1}+\cdots+A_{n-1}(X) Y+A_{n}(X)=0
$$

with coefficients in \mathcal{P}. We denote by N_{i} the denominator of the exponents in A_{i}, and $N:=\operatorname{lcm}\left(N_{i}, i=0, \ldots, n\right)$. We perform the change of variable $\tilde{X}:=X^{1 / N}$. A Puiseux series $Y(X) \in \mathcal{P}$ is a solution of (I) if and only if $\tilde{Y}(\tilde{X}):=Y\left(\tilde{X}^{N}\right) \in \mathcal{P}$ is a solution of

$$
\begin{aligned}
& \text { (II) } \quad P\left(\tilde{X}^{N}, \tilde{Y}\right)=A_{0}\left(\tilde{X}^{N}\right) \tilde{Y}^{n}+A_{1}\left(\tilde{X}^{N}\right) \tilde{Y}^{n-1}+\cdots+A_{n-1}\left(\tilde{X}^{N}\right) \tilde{Y}+A_{n}\left(\tilde{X}^{N}\right)=0 \\
& \Leftrightarrow \tilde{P}(\tilde{X}, \tilde{Y})=B_{0}(\tilde{X}) \tilde{Y}^{n}+B_{1}(\tilde{X}) \tilde{Y}^{n-1}+\cdots+B_{n-1}(\tilde{X}) \tilde{Y}+B_{n}(\tilde{X})=0
\end{aligned}
$$

which has coefficients $B_{1}(\tilde{X})$ in \mathcal{K}.

Define m_{i} to be the order of B_{i} and

$$
k:=\max \left\{l \in \mathbb{Z} \mid n l+m_{0} \leq(n-i) l+m_{i}, \forall i=1, \ldots, n\right\} .
$$

Then putting $\tilde{Y}=\tilde{X}^{k} \hat{Y}$ and dividing by $X^{n k+m_{0}}$, we get that \tilde{Y} is solution of (II) in \mathcal{P} if and only if \hat{Y} is solution of
(III) $\quad \hat{P}(\tilde{X}, \hat{Y})=C_{0}(\tilde{X}) \hat{Y}^{n}+C_{1}(\tilde{X}) \hat{Y}^{n-1}+\cdots+C_{n-1}(\tilde{X}) \hat{Y}+C_{n}(\tilde{X})=0$
with coefficients that are in $\mathbb{R}[[X]]$, in particular with $C_{0}(0) \neq 0 \Leftrightarrow C_{0}(\tilde{X})=$ $c_{0}+U(X)$ with $U(0)=0$.
Finally, divide this equation by $C_{0}(\tilde{X})$ and use the Euler formula as above to conclude that this equation (III) is equivalent to an equation

$$
(I V) \quad Q(\tilde{X}, \hat{Y})=\hat{Y}^{n}+D_{1}(\tilde{X}) \hat{Y}^{n-1}+\cdots+D_{n-1}(\tilde{X}) \hat{Y}+D_{n}(\tilde{X})=0
$$

defined by $Q(\tilde{X}, \hat{Y})$ which is a monic polynomial in \hat{Y} with coefficients $D_{k}(\tilde{X})$ in $\mathbb{R}[[(\tilde{X})]]$.
4. Since $P(Y)$ and $Q(Y)$ are relatively prime, by the cited lemma, we have:

$$
1=A_{0}(Y) P(Y)+B_{0}(Y) Q(Y)
$$

for some polynomials $A_{0}(Y)$ and $B_{0}(Y)$.Thus we have

$$
F(Y)=F(Y) A_{0}(Y) P(Y)+F(Y) B_{0}(Y) Q(Y)
$$

Then using the Euclidean division, we can write

$$
\begin{aligned}
& F(Y) A_{0}(Y)=C_{1}(Y) Q(Y)+A(Y) \\
& F(Y) B_{0}(Y)=C_{2}(Y) P(Y)+B(Y)
\end{aligned}
$$

where the degree of $A(Y)$, respectively $B(Y)$, is strictly less than $q=\operatorname{deg} Q(Y)$, respectively $p=\operatorname{deg} P(Y)$. Thus we have

$$
F(Y)=\left[C_{1}(Y)+C_{2}(Y)\right] P(Y) Q(Y)+A(Y) P(Y)+B(Y) Q(Y) .
$$

Since $\operatorname{deg}(P(Y) Q(Y))$ is $p+q$, which is bigger than $\operatorname{deg} F(Y)$, then we must have $C_{1}(Y)+C_{2}(Y)=0$.
5. Consider $C_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, C_{p}\left(X_{1}, \ldots, X_{n}\right)$ and $D_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, D_{q}\left(X_{1}, \ldots, X_{n}\right)$ as in the cited lemma. We notice that for all $i, j, C_{i}\left(a_{1}, \ldots, a_{n}\right)$ and $D_{j}\left(a_{1}, \ldots, a_{n}\right)$ are well defined, where $a_{k}=A_{k}(0)$ for all k. Set the n-tuple $A(X)=\left(A_{1}(X), \ldots, A_{n}(X)\right)$. Since for all $k, A_{k}(X)=a_{k}+U_{k}(X)$ with $U(0)=0$, the expressions $C_{i}(A(X))$ and $D_{j}(A(X))$ are also well defined (using for instance multivariate Taylor expansion). Then we can define:

$$
\begin{aligned}
P(X, Y) & :=\quad Y^{p}+C_{1}(A(X)) Y^{p-1}+\cdots+C_{p}\left(A_{n}(X)\right) \\
Q(X, Y) & :=Y^{q}+D_{1}(A(X)) Y^{p-1}+\cdots+D_{q}\left(A_{n}(X)\right)
\end{aligned}
$$

6. (a) Consider $A(X)=\sum_{i=m}^{\infty} a_{i} X^{i} \in \mathbb{R}[[X]]$ (thus $m \geq 0$) with $a_{m}>0$, and the equation

$$
Y^{2}-A(X)=0
$$

with solutions $Y(X) \in \mathcal{P}$. Applying the change of unknown $\tilde{Y}=\frac{Y}{X^{m / 2}}$, we equivalently get an equation

$$
F(X, \tilde{Y})=\tilde{Y}^{2}-\left(a_{m}+a_{m+1} X+\cdots\right)=0
$$

for which $F(0, \tilde{Y})=\tilde{Y}^{2}-a_{m}=\left(\tilde{Y}-\sqrt{a_{m}}\right)\left(\tilde{Y}+\sqrt{a_{m}}\right)$ and the solutions $\tilde{Y}(X) \in \mathcal{P}$. By Hensel's lemma, there exist $P(X, \tilde{Y})=\tilde{Y}-B_{1}(X)$ and $Q(X, \tilde{Y})=\tilde{Y}-C_{1}(X)$ with $B_{1}(X), C_{1}(X) \in \mathbb{R}[[X]]$ such that $\left(\tilde{Y}-B_{1}(X)\right)\left(\tilde{Y}-C_{1}(X)\right)=\tilde{Y}^{2}-\left(a_{m}+a_{m+1} X+\cdots\right)$. So $B_{1}(X)=-C_{1}(X)$ and $B_{1}(X)^{2}=C_{1}(X)^{2}=a_{m}+a_{m+1} X+\cdots=\frac{A(X)}{X^{m}}$. Say for instance that $B_{1}(X)>0$. Then $X^{1 / 2} B_{1}(X)=\sqrt{A(X)} \in \mathcal{P}$. Note: we have $B_{1}(X)=\sqrt{a_{m}}+U_{1}(X)$ with $U_{1}(0)=0$.
(b) We proceed by induction on $p \in \mathbb{N}$ where $2 p+1=n$.

For $p=0 \Leftrightarrow n=2 p+1=1$, we consider an equation $Y-A_{1}(X)=0$ that has a unique solution $Y(X)=A_{1}(X) \in \mathcal{P}$.

For $p>0 \Leftrightarrow n=2 p+1>1$, we suppose that any poynomial equation over \mathcal{P} of odd degree less than or equal to $2 p-1$ has a root in \mathcal{P}. Then we consider a polynomial equation

$$
\text { (I) } \quad F(X, Y)=Y^{n}+A_{1}(X) Y^{n-1}+\cdots+A_{n}(X)=0
$$

of degree $n=2 p+1$. We notice that $F(0, Y)=Y^{n}+a_{n-k} Y^{k}+\cdots+a_{n-l} Y^{l}$ for eventually some $1 \leq k, l \leq n$ and some coefficients $a_{i} \in \mathbb{R}$. Since \mathbb{R} is real closed and $F(0, Y)$ has an odd degree, then $F(0, Y)$ has at least one real root, say α, that has some multiplicity r. There are two cases:

- either $r<n$, which means that $F(0, Y)=(Y-\alpha)^{r} Q_{0}(Y)$ with $(Y-\alpha)^{r}$ and $Q_{0}(Y)$ that are relatively primes. Then we apply Hensel's lemma and get that $F(X, Y)=P(X, Y) Q(X, Y)$ for some $P(X, Y), Q(X, Y)$ that are polynomials in Y with coefficients that are formal series in X. Since $\operatorname{deg} F(X, Y)$ is odd, then either $\operatorname{deg} P(X, Y)$ or $\operatorname{deg} Q(X, Y)$ is odd. Therefore we apply the induction hypothesis to the one with odd degree and we get a root in \mathcal{P} of $F(X, Y)$.
- or $r=n$ meaning that $F(0, Y)=(Y-\alpha)^{n}$. We perform the Tschirnhausen transform $Y(X)=: Y_{1}(X)-\frac{A_{1}(X)}{n}$ in the equation (I). After expansion, we equivalently get an equation polynomial in Y_{1}

$$
\text { (II) } \quad F_{1}\left(X, Y_{1}\right)=Y_{1}^{n}+B_{2}(X) Y_{1}^{n-1}+\cdots+B_{n}(X)=0
$$

which has coefficient $B_{1}(X) \equiv 0$.
Then we set $d:=\min \left\{\left.\frac{\operatorname{deg} B_{k}(X)}{k} \right\rvert\, k=2, \ldots, n\right\}$ and we perform in (II) the change of unknown $Y_{1}(X)=: X^{d} Y_{2}(X)$. After dividing by $X^{\text {nd }}$, we get an equation

$$
\begin{equation*}
F_{2}\left(X, Y_{2}\right)=Y_{2}^{n}+C_{2}(X) Y_{2}^{n-1}+\cdots+C_{n}(X)=0 \tag{III}
\end{equation*}
$$

such that $F_{2}\left(0, Y_{2}\right)=Y_{2}^{n}+c_{2} Y_{2}^{n-1}+\cdots+c_{n}=0$ with some $c_{k} \neq 0$. Thus this equation splits into two relatively prime factors (it cannot be $(Y-\beta)^{n}$ since we have the coefficient $c_{n-1}=0$). Then we are back to the preceding case.
7. Criterion (iii) of Artin-Schreier's theorem says that a field K is real closed if and only if it is real, it has no proper algebraic extension of odd degree and $K^{*}=\left(K^{*}\right)^{2} \cup-\left(K^{*}\right)^{2}$. Equivalently, K is ordered, any polynomial equation of
odd degree with coefficients in K has a root in K, and any positive element in K has a square root (see Corollary 2 in the Lecture of the $03 / 11 / 09$). That is what we prove in question 3 (for the ordering) and in question 6 , thanks to the changes of variable described in question 3.

